科目: 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=ax﹢b的圖象交于C(4,﹣3),E(﹣3,4)兩點.且一次函數(shù)圖象交y軸于點A.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)求△COE的面積;
(3)點M在x軸上移動,是否存在點M使△OCM為等腰三角形?若存在,請你直接寫出M點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義:如果一元二次方程滿足,那么我們稱這個方程為“鳳凰”方程.已知是“鳳凰”方程,且有兩個相等的實數(shù)根,則下列結(jié)論正確的是 ( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+3與x軸交于A(﹣1,0)、B(3,0)兩點,與y軸交于點C,連接BC.
(1)求拋物線的解析式;
(2)若點P為線段BC上的一動點(不與B、C重合),PM∥y軸,且PM交拋物線于點M,交x軸于點N,當△BCM的面積最大時,求點P的坐標;
(3)在(2)的條件下,當△BCM的面積最大時,點D是拋物線的對稱軸上的動點,在拋物線上是否存在點E,使得以A、P、D、E為頂點的四邊形為平行四邊形?若存在,請直接寫出點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC為等腰直角三角形,∠ACB=90°,點A在直線DE上,過C點作CF⊥DE于F,過B點作BG⊥DE于G.
(1)發(fā)現(xiàn)問題:如圖1,當B、C兩點均在直線DE上方時,線段AG、BG和CF存在的數(shù)量關(guān)系是 .
(2)類比探究:當△ABC繞點A順時針旋轉(zhuǎn)至圖2的位置時,線段AG、BG和CF之間的數(shù)量關(guān)系是否會發(fā)生變化?如果不變,請說明理由;如果變化,請寫出你的猜想,并給予證明;
(3)拓展延伸:當△ABC繞點A順時針旋轉(zhuǎn)至圖3的位置時,若CF=1,AG=2,請直接寫出△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,⊙O的半徑為1,A,P,B,C是⊙O上的四個點.∠APC=∠CPB=60°.
(1)判斷△ABC的形狀: ;
(2)試探究線段PA,PB,PC之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)當點P位于的什么位置時,四邊形APBC的面積最大?求出最大面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,D,E為⊙O上位于AB異側(cè)的兩點,連接BD并延長至點C,使得CD=BD,連接AC交⊙O于點F,連接AE,DE,DF.
(1)證明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關(guān)系式;
(2)當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?
(3)為穩(wěn)定物價,有關(guān)管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,與x軸的一個交點坐標為(4,0),其部分圖象如圖所示,下列結(jié)論:①拋物線過原點;②4a+b+c=0;③a﹣b+c<0;④拋物線的頂點坐標為(2,b);⑤當x<2時,y隨x增大而增大.其中結(jié)論正確的是( 。
A.①②③B.①②④C.①④⑤D.③④⑤
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCO是平行四邊形,OA=1,AB=3,點C在x軸的負半軸上,將平行四邊形ABCO繞點A逆時針旋轉(zhuǎn)得到平行四邊形ADEF,AD經(jīng)過點O,點F恰好落在x軸的正半軸上,則D點的坐標為( 。
A.(1,)B.(﹣1,﹣)C.(,1)D.(﹣,﹣1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com