科目: 來源: 題型:
【題目】平面直角坐標系中(如圖),已知拋物線經過點和,與y軸相交于點C,頂點為P.
(1)求這條拋物線的表達式和頂點P的坐標;
(2)點E在拋物線的對稱軸上,且,求點E的坐標;
(3)在(2)的條件下,記拋物線的對稱軸為直線MN,點Q在直線MN右側的拋物線上,,求點Q的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】九年級學生到距離學校6千米的百花公園去春游,一部分學生步行前往,20分鐘后另一部分學生騎自行車前往,設(分鐘)為步行前往的學生離開學校所走的時間,步行學生走的路程為千米,騎自行車學生騎行的路程為千米,關于的函數(shù)圖象如圖所示.
(1)求關于的函數(shù)解析式;
(2)步行的學生和騎自行車的學生誰先到達百花公園,先到了幾分鐘?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中點,P是直線BC上一點,把△BDP沿PD所在直線翻折后,點B落在點Q處,如果QD⊥BC,那么點P和點B間的距離等于____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,在半徑為2的扇形中,°,點C在半徑OB上,AC的垂直平分線交OA于點D,交弧AB于點E,聯(lián)結.
(1)若C是半徑OB中點,求的正弦值;
(2)若E是弧AB的中點,求證:;
(3)聯(lián)結CE,當△DCE是以CD為腰的等腰三角形時,求CD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,梯形ABCD,DC∥AB,對角線AC平分∠BCD,點E在邊CB的延長線上,EA⊥AC,垂足為點A.
(1)求證:B是EC的中點;
(2)分別延長CD、EA相交于點F,若AC2=DCEC,求證:AD:AF=AC:FC.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學校要印刷一批藝術節(jié)的宣傳資料,在需要支付制版費100元和每份資料0.3元印刷費的前提下,甲、乙兩個印刷廠分別提出了不同的優(yōu)惠條件.甲印刷廠提出:所有資料的印刷費可按9折收費;乙印刷廠提出:凡印刷數(shù)量超過200份的,超過部分的印刷費可按8折收費.
(1)設該學校需要印刷藝術節(jié)的宣傳資料x份,支付甲印刷廠的費用為y元,寫出y關于x的函數(shù)關系式,并寫出它的定義域;
(2)如果該學校需要印刷藝術節(jié)的宣傳資料600份,那么應該選擇哪家印刷廠比較優(yōu)惠?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,將的邊繞著點順時針旋轉得到,邊AC繞著點A逆時針旋轉得到,聯(lián)結.當時,我們稱是的“雙旋三角形”.如果等邊的邊長為a,那么它的“雙旋三角形”的面積是__________(用含a的代數(shù)式表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】平面直角坐標系xOy(如圖),拋物線y=﹣x2+2mx+3m2(m>0)與x軸交于點A、B(點A在點B左側),與y軸交于點C,頂點為D,對稱軸為直線l,過點C作直線l的垂線,垂足為點E,聯(lián)結DC、BC.
(1)當點C(0,3)時,
①求這條拋物線的表達式和頂點坐標;
②求證:∠DCE=∠BCE;
(2)當CB平分∠DCO時,求m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足為點D,E是BD的中點,聯(lián)結AE并延長,交邊BC于點F.
(1)求∠EAD的余切值;
(2)求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,為的直徑,,為上一點,過點作的弦,設.
(1)若時,求、的度數(shù)各是多少?
(2)當時,是否存在正實數(shù),使弦最短?如果存在,求出的值,如果不存在,說明理由;
(3)在(1)的條件下,且,求弦的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com