科目: 來源: 題型:
【題目】已知拋物線y=x2﹣(2m+1)x+m2+m,其中m是常數(shù).
(1)求證:不論m為何值,該拋物線與z軸一定有兩個公共點;
(2)若該拋物線的對稱軸為直線x=,請求出該拋物線的頂點坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,梯形ABCD中,AB∥CD,∠ABC=90°,AB=6,BC=8,tanD=2,點E是射線CD上一動點(不與點C重合),將△BCE沿著BE進行翻折,點C的對應點記為點F.
(1)如圖1,當點F落在梯形ABCD的中位線MN上時,求CE的長.
(2)如圖2,當點E在線段CD上時,設CE=x,,求y與x之間的函數(shù)關系式,并寫出定義域.
(3)如圖3,聯(lián)結AC,線段BF與射線CA交于點G,當△CBG是等腰三角形時,求CE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=ax2﹣2x+c經過△ABC的三個頂點,其中點A(0,1),點B(9,10),AC∥x軸.
(1)求這條拋物線的解析式.
(2)求tan∠ABC的值.
(3)若點D為拋物線的頂點,點E是直線AC上一點,當△CDE與△ABC相似時,求點E的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點D、E分別在邊BC、AC上,且CD=CE,聯(lián)結DE并延長至點F,使EF=AE,聯(lián)結AF,CF,聯(lián)結BE并延長交CF于點G.
(1)求證:BC=DF;
(2)若BD=2DC,求證:GF=2EG;
查看答案和解析>>
科目: 來源: 題型:
【題目】在一條筆直的公路上有AB兩地,小明騎自行車從A地去B地,小剛騎電動車從B地去A地然后立即原路返回到B地,如圖是兩人離B地的距離y(千米)和行駛時間x(小時)之間的函數(shù)圖象.請根據(jù)圖象回答下列問題:
(1)AB兩地的距離是_____,小明行駛的速度是_____.
(2)若兩人間的距離不超過3千米時,能夠用無線對講機保持聯(lián)系,那么小剛從A地原路返回到B地途中,兩人能夠用無線對講機保持聯(lián)系的x的取值范圍是______.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC中,AD⊥BC,垂足為D,且AD=4,以AD為直徑作圓O,交AB邊于點G,交AC邊于點F,如果點F恰好是的中點.
(1)求CD的長度.
(2)當BD=3時,求BG的長度.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,BC=3,AC=4,BD平分∠ABC,將△ABC繞著點A旋轉后,點B、C的對應點分別記為B1、C1,如果點B1落在射線BD上,那么CC1的長度為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=5,BC=6,點O是邊BC上的動點,以點O為圓心,OB為半徑作圓O,交AB邊于點D,過點D作∠ODP=∠B,交邊AC于點P,交圓O與點E.設OB=x.
(1)當點P與點C重合時,求PD的長;
(2)設AP﹣EP=y,求y關于x的解析式及定義域;
(3)聯(lián)結OP,當OP⊥OD時,試判斷以點P為圓心,PC為半徑的圓P與圓O的位置關系.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=ax2+4(a≠0)與x軸交于點A和點B(2,0),與y軸交于點C,點D是拋物線在第一象限的點.
(1)當△ABD的面積為4時,
①求點D的坐標;
②聯(lián)結OD,點M是拋物線上的點,且∠MDO=∠BOD,求點M的坐標;
(2)直線BD、AD分別與y軸交于點E、F,那么OE+OF的值是否變化,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知梯形ABCD中,AD∥BC,AC、BD相交于點O,AB⊥AC,AD=CD,AB=3,BC=5.求:
(1)tan∠ACD的值;
(2)梯形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com