科目: 來源: 題型:
【題目】如圖,若二次函數y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則①二次函數的最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac>0;④當y<0時,x<﹣1或x>3,其中正確的個數是
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸是,且經過A(﹣4,0),C(0,2)兩點,直線l:y=kx+t(k≠0)經過A,C.
(1)求拋物線和直線l的解析式;
(2)點P是直線AC上方的拋物線上一個動點,過點P作PD⊥x軸于點D,交AC于點E,過點P作PF⊥AC,垂足為F,當△PEF≌△AED時,求出點P的坐標;
(3)在拋物線的對稱軸上是否存在點Q,使△ACQ為等腰三角形?若存在,直接寫出所有滿足條件的Q點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,點D,E,N分別是△ABC的AB,AC,BC邊上的中點,連接AN,DE交于點M.
(1)觀察猜想:的值為 :的值為 ;
(2)探究與證明:將△ADE繞點A按順時針方向旋轉α角(0°<α<360°),且△ADE內部的線段AM隨之旋轉,如圖2所示,連接BD,CE,MN,試探究線段BD與CE和BD與MN之間分別有什么樣的數量關系,并證明;
(3)拓展與延伸:△ADE在旋轉的過程中,設直線CE與BD相交于點F,當∠CAE=90°時,BF= .
查看答案和解析>>
科目: 來源: 題型:
【題目】為了美化城市環(huán)境,某街道重修了路面,準備將老舊的路燈換成LED太陽能路燈,計劃購買海螺臂和A字臂兩種型號的太陽能路燈共100只,經過市場調查:購買海螺臂太陽能路燈1只,A字臂太陽能路燈2只共需2300元;購買海螺臂太陽能路燈3只,A字臂太陽能路燈4只共需5400元.
(1)求海螺臂太陽能路燈和A字臂太陽能路燈的單價:
(2)在實際購買時,恰逢商家活動,購買海螺臂太陽能路燈超過20只時,超過的部分打九折優(yōu)惠,A字臂太陽能路燈全部打八折優(yōu)惠;若規(guī)定購買的海螺臂太陽能路燈的數量不少于A字臂太陽能路燈的數量的一半,請你設計一種購買方案,使得總費用最少,并求出最小總費用.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一艘漁船位于燈塔A的南偏西75°方向的B處,距離A處30海里,漁船沿北偏東30°方向追尋魚群,航行一段時間后,到達位于A處北偏西20°方向的C處,漁船出現了故障立即向正在燈塔A處的巡邏船發(fā)出求救信號.巡邏船收到信號后以40海里每小時的速度前往救助,請問巡邏船多少分鐘能夠到達C處?(參考數據:≈1.4,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,最后結果精確到1分鐘).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知將反比例函數(x<0),沿y軸翻折得到反比例函數(x>0),一次函數y=ax+b與交于A(1,m),B(4,n)兩點;
(1)求反比例函數y2和一次函數y=ax+b的解析式;
(2)連接OA,過B作BC⊥x軸,垂足為C,點P是線段AB上一點,若直線OP將四邊形OABC的面積分成1:2兩部分,求點P的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,C是半圓O上一個動點,AB為半圓的直徑,D是弧BC的中點,過點D作半圓O的切線DE交AC的延長線于點E.
(1)求證:AE⊥DE;
(2)①已知CE=2,DE=4,則AB= ;
②連接OC,DC,當∠BAC= 度時,四邊形OBDC為菱形.
查看答案和解析>>
科目: 來源: 題型:
【題目】近日,全省各地市的2019年初中畢業(yè)升學體育考試工作正依照某省教育廳的具體要求在有條不紊的進行當中,某中學在正式考試前,為了讓同學們在中招體育考試中獲得理想成績,同時為了了解學生的當前水平,按批次進行了模擬考試,并隨機抽取若干名學生問卷調查,現將調查結果繪制成如下不完整的統(tǒng)計圖表:
組別 | 成績范圍x(分) | 頻數(人數) |
A | 60<x≤70 | 54 |
B | 50<x≤60 | m |
C | 40<x≤50 | n |
D | 30<x≤40 | 6 |
(1)這次調查的總人數有 人,表中的m= ,n= ;
(2)扇形統(tǒng)計圖中B組對應的圓心角為 °;
(3)請補全頻數分布直方圖;
(4)若該校九年級共有學生2700名,且都參加了正式的初中畢業(yè)升學體育考試,小華也參加了這次考試并得了67分,若規(guī)定60分以上為優(yōu)秀,體育老師想要在獲得優(yōu)秀的學生中隨機抽出1名,作為學生代表向學弟學妹們傳授經驗,求抽到小華的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=2,∠A=30°,點D是AB的中點,P是AC邊上一動點,連接DP,將△DPA沿著DP折疊,A點落到F處,DF與AC交于點E,當△DPF的一邊與BC平行時,線段DE的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,AB長為半徑畫弧,交邊AD于點;②再分別以B,F為圓心畫弧,兩弧交于平行四邊形ABCD內部的點G處;③連接AG并延長交BC于點E,連接BF,若BF=3,AB=2.5,則AE的長為( 。
A.2B.4C.8D.5
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com