科目: 來源: 題型:
【題目】若平面直角坐標(biāo)系內(nèi)的點 M 滿足橫、縱坐標(biāo)都為整數(shù),則把點 M 叫做“整點”.例如:P(1,0)、Q(2,-2)都是“整點”.拋物線 y=mx2-2mx+m-1(m>0)與 x 軸交于 A、 B 兩點,若該拋物線在 A、B 之間的部分與線段 AB 所圍成的區(qū)域(包括邊界)恰有 6 個整點,則 m 的取值范圍是( )
A. m B. m C. m D. m
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與直線y=x交于(1,1)和(3,3)兩點,現(xiàn)有以下結(jié)論:①b2﹣4c>0;②3b+c+6=0;③當(dāng)x2+bx+c>時,x>2;④當(dāng)1<x<3時,x2+(b﹣1)x+c<0,其中正確的序號是( )
A. ①②④B. ②③④C. ②④D. ③④
查看答案和解析>>
科目: 來源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)分別為,點在軸上,其坐標(biāo)為,拋物線經(jīng)過點為第三象限內(nèi)拋物線上一動點.
求該拋物線的解析式.
連接,過點作軸交于點,當(dāng)的周長最大時,求點的坐標(biāo)和周長的最大值.
若點為軸上一動點,點為平面直角坐標(biāo)系內(nèi)一點.當(dāng)點構(gòu)成菱形時,請直接寫出點的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:
如圖1,是的直徑,點在上,,垂足為,,分別交、于點、.求證:.
圖1 圖2
(1)本題證明的思路可用下列框圖表示:
根據(jù)上述思路,請你完整地書寫本題的證明過程.
(2)如圖2,若點和點在的兩側(cè),、的延長線交于點,的延長線交于點,其余條件不變,(1)中的結(jié)論還成立嗎?請說明理由;
(3)在(2)的條件下,若,,求
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).
已知平面上兩點,則所有符合且的點會組成一個圓.這個結(jié)論最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),稱阿氏圓.
阿氏圓基本解法:構(gòu)造三角形相似.
(問題)如圖1,在平面直角坐標(biāo)中,在軸,軸上分別有點,點是平面內(nèi)一動點,且,設(shè),求的最小值.
阿氏圓的關(guān)鍵解題步驟:
第一步:如圖1,在上取點,使得;
第二步:證明;第三步:連接,此時即為所求的最小值.
下面是該題的解答過程(部分):
解:在上取點,使得,
又.
任務(wù):
將以上解答過程補充完整.
如圖2,在中,為內(nèi)一動點,滿足,利用中的結(jié)論,請直接寫出的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】運城菖蒲酒產(chǎn)于山西垣曲.莒蒲灑遠在漢代就已名噪酒壇,為歷代帝王將相所喜愛,并被列為歷代御膳香醪.菖蒲酒在市場的銷售量會根據(jù)價格的變化而變化.菖蒲酒每瓶的成本價是元,某超市將售價定為元時,每天可以銷售瓶,若售價每降低元,每天即可多銷售瓶(售價不能高于元),若設(shè)每瓶降價元
用含的代數(shù)式表示菖蒲酒每天的銷售量.
每瓶菖蒲酒的售價定為多少元時每天獲取的利潤最大?最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】山西物產(chǎn)豐富,在歷史傳承與現(xiàn)代科技進步中,特色農(nóng)林牧業(yè)、農(nóng)產(chǎn)品加工業(yè)、傳統(tǒng)手工業(yè)不斷發(fā)展革新,富有地域特色和品牌的士特產(chǎn)品愈加豐富.根據(jù)市場調(diào)查,下面五種特產(chǎn)比較受人們的青睞:山西汾酒、山西老陳醋、晉中平遙牛肉、山西沁州黃小米、運城芮城麻片,某學(xué)校老師帶領(lǐng)學(xué)生在集市上隨機調(diào)查了部分市民對“我最喜愛的特產(chǎn)”進行投票,將票數(shù)進行統(tǒng)計.繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).
請根據(jù)圖中的信息解答下列問題.
直接寫出參與投票的人數(shù),并補全條形統(tǒng)計圖;
若該集市上共有人,請估計該集市喜愛運城芮城麻片的人數(shù);
若要從這五種特產(chǎn)中隨機抽取出兩種特產(chǎn),請用畫樹狀圖或列表的方法,求正好抽到山西汾酒和晉中平遙牛肉的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示的是太原市某公園“水上滑梯”的側(cè)面圖,其中段可看成是雙曲線的一部分,其中,矩形中有一個向上攀爬的梯子,米,入口,且米,出口點距水面的距離為米,則點之間的水平距離的長度為( )
A.米B.米C.米D.米
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2BO,AC=6,點B的坐標(biāo)為(1,0),拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.
(1)求點A的坐標(biāo);
(2)求拋物線的解析式;
(3)點P是直線AB上方拋物線上的一點,過點P作PD垂直x軸于點D,交線段AB于點E,使PE=DE.
①求點P的坐標(biāo);
②在直線PD上是否存在點M,使△ABM為直角三角形?若存在,求出符合條件的所有點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com