科目: 來源: 題型:
【題目】對于題目“一段拋物線L:y=﹣x(x﹣3)+c(0≤x≤3)與直線l:y=x+2有唯一公共點,若c為整數(shù),確定所有c的值,”甲的結(jié)果是c=1,乙的結(jié)果是c=3或4,則( 。
A. 甲的結(jié)果正確
B. 乙的結(jié)果正確
C. 甲、乙的結(jié)果合在一起才正確
D. 甲、乙的結(jié)果合在一起也不正確
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P時直線AC下方拋物線上的動點.
(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當(dāng)四邊形AECP的面積最大時,求點P的坐標(biāo);
(3)當(dāng)點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點是原點,四邊形是矩形,點,點.以點為中心,順時針旋轉(zhuǎn)矩形,得到矩形,點的對應(yīng)點分別為.
(1)如圖①,當(dāng)點落在邊上時,求點的坐標(biāo);
(2)如圖②,當(dāng)點落在線段上時,與交于點.求點的坐標(biāo);
(3)記為矩形對角線的交點,為的面積,求的取值范圍(直接寫出結(jié)果即可).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)(k≠0)在第一象限的圖象交于A(1,n)和B兩點.
(1)求反比例函數(shù)的解析式及點B坐標(biāo);
(2)在第一象限內(nèi),當(dāng)一次函數(shù)y=-x+5的值大于反比例函數(shù)(k≠0)的值時,寫出自變量x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】(理論學(xué)習(xí))學(xué)習(xí)圖形變換中的軸對稱知識后,我們?nèi)菀自谥本上找到點,使的值最小,如圖所示,根據(jù)這一理論知識解決下列問題:
(1)(實踐運用)如圖,已知的直徑為,弧所對圓心角的度數(shù)為,點是弧的中點,請你在直徑上找一點,使的值最小,并求的最小值.
(2)(拓展延伸)在圖中的四邊形的對角線上找一點,使.(尺規(guī)作圖,保留作圖痕跡,不必寫出作法).
查看答案和解析>>
科目: 來源: 題型:
【題目】興發(fā)服裝店老板用4500元購進一批某款T恤衫,由于深受顧客喜愛,很快售完,老板又用4950元購進第二批該款式T恤衫,所購數(shù)量與第一批相同,但每件進價比第一批多了9元.
(1)第一批該款式T恤衫每件進價是多少元?
(2)老板以每件120元的價格銷售該款式T恤衫,當(dāng)?shù)诙?/span>T恤衫售出時,出現(xiàn)了滯銷,于是決定降價促銷,若要使第二批的銷售利潤不低于650元,剩余的T恤衫每件售價至少要多少元?(利潤=售價﹣進價)
查看答案和解析>>
科目: 來源: 題型:
【題目】端午節(jié)“賽龍舟,吃粽子”是中華民族的傳統(tǒng)習(xí)俗.節(jié)日期間,小邱家包了三種不同餡的粽子,分別是:紅棗粽子(記為A),豆沙粽子(記為B),肉粽子(記為C),這些粽子除了餡不同,其余均相同.粽子煮好后,小邱的媽媽給一個白盤中放入了兩個紅棗粽子,一個豆沙粽子和一個肉粽子;給一個花盤中放入了兩個肉粽子,一個紅棗粽子和一個豆沙粽子.
根據(jù)以上情況,請你回答下列問題:
(1)假設(shè)小邱從白盤中隨機取一個粽子,恰好取到紅棗粽子的概率是多少?
(2)若小邱先從白盤里的四個粽子中隨機取一個粽子,再從花盤里的四個粽子中隨機取一個粽子,請用列表法或畫樹狀圖的方法,求小邱取到的兩個粽子中一個是紅棗粽子、一個是豆沙粽子的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽臺的A處測得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測得兩建筑物之間的距離BC是28米,請你幫助小明求出建筑物CD的高度(精確到1米).
(參考數(shù)據(jù):sin25°≈0.42,cos25°≈0.91,tan25°≈0.47;sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.)
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)參加“創(chuàng)文明城市”書畫比賽時,老師從全校個班中隨機抽取了個班(用表示),對抽取的作品的數(shù)量進行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.回答下列問題:
(1)老師采用的調(diào)查方式是 .(填“普查”或“抽樣調(diào)查”);
(2)請補充完整條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中班作品數(shù)量所對應(yīng)的圓心角度數(shù) 度.
(3)請估計全校共征集作品的件數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,分別沿長方形紙片ABCD和正方形紙片EFGH的對角線AC,EG剪開,拼成如圖2所示的ALMN,若中間空白部分四邊形OPQR恰好是正方形,且ALMN的面積為50,則正方形EFGH的面積為( 。
A. 24 B. 25 C. 26 D. 27
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com