【題目】若,m 是兩條不同的直線,m 垂直于平面 ,則“ ”是“" 的 ( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
【答案】B
【解析】若,因?yàn)閙垂直平面,則或,又m垂直于平面,則,所以“”是的必要不充分條件,故選B。
【考點(diǎn)精析】利用空間點(diǎn)、線、面的位置和空間點(diǎn)、線、面的位置對(duì)題目進(jìn)行判斷即可得到答案,需要熟知如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi);過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面;如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(兩個(gè)平面的交線);(平行線的傳遞性)平行與同一直線的兩條直線互相平行;如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi);過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面;如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(兩個(gè)平面的交線);(平行線的傳遞性)平行與同一直線的兩條直線互相平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅行社組織一批游客外出旅游,原計(jì)劃租用45座客車(chē)若干輛,但有15人沒(méi)有座位;若租用同樣數(shù)量的60座客車(chē),則多出一輛車(chē),且其余客車(chē)恰好坐滿(mǎn),已知45座客車(chē)租金為每輛220元,60座客車(chē)租金為每輛300元,問(wèn):
(1)這批游客的人數(shù)是多少?原計(jì)劃租用多少輛45座客車(chē)?
(2)若租用同一種車(chē),要使每位游客都有座位,應(yīng)該怎樣租用才合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2015·陜西)“sin=cos”是“cos2=0”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2015·江蘇)如圖,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1 , 設(shè)AB1的中點(diǎn)為D,B1CBC1=E.求證:
(1)DE∥平面AA1C1C
(2)BC1⊥AB1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2015·湖南)某商場(chǎng)舉行有獎(jiǎng)促銷(xiāo)活動(dòng),顧客購(gòu)買(mǎi)一定金額的商品后即可抽獎(jiǎng),抽獎(jiǎng)方法是:從裝有2個(gè)紅球A1, A2和1個(gè)白球B的甲箱與裝有2個(gè)紅球a1,a2和2個(gè)白球b1,b2的乙箱中,各隨機(jī)摸出1個(gè)球,若摸出的2個(gè)球都是紅球則中獎(jiǎng),否則不中獎(jiǎng)。
(1)用球的標(biāo)號(hào)列出所有可能的摸出結(jié)果;
(2)有人認(rèn)為:兩個(gè)箱子中的紅球比白球多,所以中獎(jiǎng)的概率大于不中獎(jiǎng)的概率,你認(rèn)為正確嗎?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓(a>b>0)過(guò)點(diǎn)(0,),且離心率為。
(Ⅰ)求橢圓E的方程;
(II)設(shè)直線x my 1,(m R)交橢圓E與A,B兩點(diǎn),判斷點(diǎn)G(-,0)與以線段AB為直徑的圓的位置關(guān)系,并說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平面,點(diǎn)分別是的中點(diǎn)。
(1)求證:平面
(2)求證:平面平面
(3)求直線與平面所成角的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)對(duì)定義域內(nèi)的每一個(gè)值在其定義域內(nèi)都存在唯一的使成立,則稱(chēng)該函數(shù)為“依賴(lài)函數(shù)”.
(1)判斷函數(shù)是否為“依賴(lài)函數(shù)”,并說(shuō)明理由;
(2)若函數(shù)在定義域上為“依賴(lài)函數(shù)”,求實(shí)數(shù)乘積的取值范圍;
(3)已知函數(shù)在定義域上為“依賴(lài)函數(shù)”,若存在實(shí)數(shù)使得對(duì)任意的有不等式都成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),Xn是曲線y=X2n+2+1在點(diǎn)(1,2)處的切線與x軸焦點(diǎn)的橫坐標(biāo)
(1)求數(shù)列{xn}的通項(xiàng)公式;
(2)記Tn=....,證明Tn
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com