精英家教網 > 高中數學 > 題目詳情
將甲、乙兩顆骰子先后各拋擲一次,a,b分別表示拋擲甲、乙兩顆骰子所擲出的點數,若“M(a,b)落在不等式x2+y2≤m(m為常數)所表示的區(qū)域內”設為事件C,要使事件C的概率P(C)=
5
6
,則實數m的最小值為( 。
分析:本題是一個古典概型與線性規(guī)劃及直線方程的綜合應用題,不難求出甲、乙兩顆骰子先后各拋一次這個事件總數為36.要使事件C的概率P(C)=
5
6
,則落在區(qū)域內的點為30個,由于a=1,2,3,4時,可有4×6=24情況,a=4時,可有5種情況,a=5時,可有4種情況,a=6時,有3種情況即可,從而可求實數m的最小值.
解答:解:要使事件C的概率P(C)=
5
6
,則落在區(qū)域內的點為30個,只需(1,1),(1,2),(1,3),(1,4),(1,5),(1,6);(2,1),(2,2),(2,3),(2,4),(2,5),(2,6);(3,1),(3,2),(3,3),(3,4),(3,5),(3,6);(4,1),(4,2),(4,3),(4,4),(4,5);  (5,1),(5,2),(5,3),(5,4);(6,1),(6,2),(6,3),所以m的最小值為45
故選C.
點評:古典概型要求所有結果出現的可能性都相等,強調所有結果中每一結果出現的概率都相同.弄清一次試驗的意義以及每個基本事件的含義是解決問題的前提,正確把握各個事件的相互關系是解決問題的關鍵.解決問題的步驟是:計算滿足條件的基本事件個數,及基本事件的總個數,然后代入古典概型計算公式進行求解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

將甲、乙兩顆骰子先后各拋一次,a、b分別表示拋擲甲、乙兩顆骰子所出現的點數.
(1)若點P(a,b)落在不等式組
x>0
y>0
x+y≤4
表示的平面區(qū)域的事件記為A,求事件A的概率;
(2)若點P(a,b)落在直線x+y=m(m為常數)上,且使此事件的概率最大,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

將甲、乙兩顆骰子先后各拋一次,a,b分別表示拋擲甲、乙兩顆骰子所出的點數.
(Ⅰ)若點P(a,b)落在不等式組
x>0
y>0
x+y≤4
表示的平面域的事件記為A,求事件A的概率;
(Ⅱ)若點P(a,b)落在x+y=m(m為常數)的直線上,且使此事件的概率最大,求m的值及最大概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

將甲、乙兩顆骰子先后各拋擲一次,a,b分別表示拋擲甲、乙兩顆骰子所擲出的點數,若M(a,b)落在不等式x2+y2≤m(m為常數)所表示的區(qū)域內,設為事件C,要使事件C的概率P(C)=1,則m的最小值為
72
72

查看答案和解析>>

科目:高中數學 來源: 題型:

將甲、乙兩顆骰子先后各拋擲一次,a,b分別表示拋擲甲、乙兩顆骰子所擲出的點數,若M(a,b)落在不等式x2+y2≤m(m為常數)所表示的區(qū)域內,設為事件C,要使事件C的概率P(C)=1,則m的最小值為( 。
A、52B、61C、72D、7

查看答案和解析>>

同步練習冊答案