【題目】某位同學(xué)進行寒假社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫與該小賣部的這種飲料銷量(杯),得到如下數(shù)據(jù):
日期 | 1月11日 | 1月12日 | 1月13日 | 1月14日 | 1月15日 |
平均氣溫 | 9 | 10 | 12 | 11 | 8 |
銷量(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)根據(jù)(1)中所得的線性回歸方程,若天氣預(yù)報1月16日的白天平均氣溫,請預(yù)測該奶茶店這種飲料的銷量.
(參考公式:,)
【答案】(1)(2)(3)該奶茶店這種飲料的銷量大約為19杯
【解析】
(1)根據(jù)題意列舉出從5組數(shù)據(jù)中選取2組數(shù)據(jù)共有10種情況,每種情況都是可能出現(xiàn)的,滿足條件的事件包括的基本事件有4種.根據(jù)等可能事件的概率做出結(jié)果.(2)根據(jù)所給的數(shù)據(jù),先求出,的平均數(shù),即求出本組數(shù)據(jù)的樣本中心點,根據(jù)最小二乘法求出線性回歸方程的系數(shù),寫出線性回歸方程.(3)利用線性回歸方程,取7,即可預(yù)測該奶茶店這種飲料的銷量.
解:(1)設(shè)“選取的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)”為事件A,
所有基本事件(其中為1月份的日期數(shù))有:
,,,,,,,,,,共有10種.
事件A包括的基本事件有,,,共4種.
所以所求.
(2)由數(shù)據(jù),求得,.
由公式,求得,,
所以y關(guān)于x的線性回歸方程為.
(3)當時,,
所以該奶茶店這種飲料的銷量大約為19杯.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
時間代號t | 1 | 2 | 3 | 4 | 5 |
儲蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
(1)求y關(guān)于t的線性回歸方程;
(2)用所求線性回歸方程預(yù)測該地區(qū)2019年(t=6)的人民幣儲蓄存款.
(回歸方程中,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
…
照此規(guī)律,第n個等式為__________________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C: -=1 (a>0,b>0)的左、右焦點分別為F1,F2,點P為雙曲線右支上一點,若|PF1|2=8a|PF2|,則雙曲線C的離心率的取值范圍為( )
A. (1,3] B. [3,+∞)
C. (0,3) D. (0,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)吃粽子是我國的傳統(tǒng)習(xí)俗,設(shè)一盤中裝有個粽子,其中豆沙粽個,肉粽個,白粽個,這三種粽子的外觀完全相同,從中任意選取個.
()求三種粽子各取到個的概率.
()設(shè)表示取到的豆沙粽個數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型工廠有6臺大型機器,在1個月中,1臺機器至多出現(xiàn)1次故障,且每臺機器是否出現(xiàn)故障是相互獨立的,出現(xiàn)故障時需1名工人進行維修,每臺機器出現(xiàn)故障的概率為.已知1名工人每月只有維修2臺機器的能力(若有2臺機器同時出現(xiàn)故障,工廠只有1名維修工人,則該工人只能逐臺維修,對工廠的正常運行沒有任何影響),每臺機器不出現(xiàn)故障或出現(xiàn)故障時能及時得到維修,就能使該廠獲得10萬元的利潤,否則將虧損2萬元.該工廠每月需支付給每名維修工人1萬元的工資.
(1)若每臺機器在當月不出現(xiàn)故障或出現(xiàn)故障時,有工人進行維修(例如:3臺大型機器出現(xiàn)故障,則至少需要2名維修工人),則稱工廠能正常運行.若該廠只有1名維修工人,求工廠每月能正常運行的概率;
(2)已知該廠現(xiàn)有2名維修工人.
(。┯浽搹S每月獲利為萬元,求的分布列與數(shù)學(xué)期望;
(ⅱ)以工廠每月獲利的數(shù)學(xué)期望為決策依據(jù),試問該廠是否應(yīng)再招聘1名維修工人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是美麗的“勾股樹”,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖一是第1代“勾股樹”,重復(fù)圖一的作法,得到圖二為第2代“勾股樹”,以此類推,已知最大的正方形面積為1,則第n代“勾股樹”所有正方形的面積的和為( )
A. nB. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司欲生產(chǎn)一款迎春工藝品回饋消費者,工藝品的平面設(shè)計如圖所示,該工藝品由直角和以為直徑的半圓拼接而成,點為半圈上一點(異于,),點在線段上,且滿足.已知,,設(shè).
(1)為了使工藝禮品達到最佳觀賞效果,需滿足,且達到最大.當為何值時,工藝禮品達到最佳觀賞效果;
(2)為了工藝禮品達到最佳穩(wěn)定性便于收藏,需滿足,且達到最大.當為何值時,取得最大值,并求該最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com