6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F1(-1,0),P為橢圓上的頂點,且∠PF1O=45°(O為坐標原點).
(1)求a,b的值;
(2)已知直線l1:y=kx+m1與橢圓交于A,B兩點,直線l2:y=kx+m2(m1≠m2)與橢圓交于C,D兩點,且|AB|=|CD|.
①求m1+m2的值;
②求四邊形ABCD的面積S的最大值.

分析 (1)利用已知條件推出b=c=1,求出a,即可得到橢圓的標準方程.
(2)設A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).(。┞(lián)立$\left\{{\begin{array}{l}{y=kx+{m_1}}\\{\frac{x^2}{2}+{y^2}=1}\end{array}}\right.$,消去y得:$({1+2{k^2}}){x^2}+4k{m_1}x+2{m_1}^2-2=0$$({1+2{k^2}}){x^2}+4k{m_1}x+2{m_1}^2-2=0$,利用判別式以及韋達定理,求出弦長|AB|,|CD|,通過|AB|=|CD|,推出m1+m2=0.
(ⅱ)由題意得四邊形ABCD是平行四邊形,設兩平行線AB,CD間的距離為d,則$d=\frac{{|{{m_1}-{m_2}}|}}{{\sqrt{1+{k^2}}}}$,得到$d=\frac{{|{2{m_1}}|}}{{\sqrt{1+{k^2}}}}$,求出三角形的面積表達式,路基本不等式求解即可.

解答 解:(1)因為F1(-1,0),∠PF1O=45°,所以b=c=1.…(2分)
故a2=2.所以橢圓的標準方程為$\frac{x^2}{2}+{y^2}=1$.…(4分)
(2)設A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).
(。┯$\left\{{\begin{array}{l}{y=kx+{m_1}}\\{\frac{x^2}{2}+{y^2}=1}\end{array}}\right.$消去y得:$({1+2{k^2}}){x^2}+4k{m_1}x+2{m_1}^2-2=0$,
$({1+2{k^2}}){x^2}+4k{m_1}x+2{m_1}^2-2=0$
△=(4km12-4(2m12-2)(1+2k2)=8(1+2k2-m12)>0
x1+x2=$-\frac{4k{m}_{1}}{1+2{k}^{2}}$,
x1x2=$\frac{2{{m}_{1}}^{2}-2}{1+2{k}^{2}}$…(6分)
所以$|{AB}|=\sqrt{1+{k^2}}|{{x_1}-{x_2}}|=\sqrt{1+{k^2}}\sqrt{{{({x_1}+{x_2})}^2}-4{x_1}{x_2}}$
=$2\sqrt{2}\frac{{\sqrt{1+{k^2}}•\sqrt{2{k^2}-{m_1}^2+1}}}{{1+2{k^2}}}$
同理$|{CD}|=2\sqrt{2}\frac{{\sqrt{1+{k^2}}•\sqrt{2{k^2}-{m_2}^2+1}}}{{1+2{k^2}}}$…(9分)
因為|AB|=|CD|,
所以$2\sqrt{2}\frac{{\sqrt{1+{k^2}}•\sqrt{2{k^2}-{m_1}^2+1}}}{{1+2{k^2}}}=2\sqrt{2}\frac{{\sqrt{1+{k^2}}•\sqrt{2{k^2}-{m_2}^2+1}}}{{1+2{k^2}}}$.
得${m_1}^2={m_2}^2$,又m1≠m2,所以m1+m2=0.…(10分)
(ⅱ)由題意得四邊形ABCD是平行四邊形,設兩平行線AB,CD間的距離為d,
則$d=\frac{{|{{m_1}-{m_2}}|}}{{\sqrt{1+{k^2}}}}$.…(11分)
又m1≠m2,所以$d=\frac{{|{2{m_1}}|}}{{\sqrt{1+{k^2}}}}$,
所以$S=|{AB}|•d=4\sqrt{2}\frac{{\sqrt{(2{k^2}-{m_1}^2+1){m_1}^2}}}{{1+2{k^2}}}$…(13分)
$≤4\sqrt{2}\frac{{\frac{{2{k^2}-{m_1}^2+1+{m_1}^2}}{2}}}{{1+2{k^2}}}=2\sqrt{2}$.…(14分)
(或$S=4\sqrt{2}\sqrt{-{{(\frac{{{m_1}^2}}{{1+2{k^2}}}-\frac{1}{2})}^2}+\frac{1}{4}}≤2\sqrt{2}$)
所以,當$2{k^2}-{m_1}^2+1={m_1}^2$時,四邊形ABCD的面積S取得最大值為$2\sqrt{2}$.…(15分)

點評 本題考查橢圓的方程的應用,直線與橢圓的位置關系的綜合應用,考查轉化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合A={x|-1<x<2},B={x|0<x<3},則A∪B等于( 。
A.(0,2)B.(2,3)C.(-1,3)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.傾斜角為120°且在y軸上的截距為-2的直線方程為( 。
A.y=-$\sqrt{3}$x+2B.y=-$\sqrt{3}$x-2C.y=$\sqrt{3}$x+2D.y=$\sqrt{3}$x-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在正方體ABCD-A1B1C1D1中,E為線段A1C1的中點,則異面直線DE與B1C所成角的大小是( 。
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設F為拋物線y2=12x的焦點(O為坐標原點),M(x,y)為拋物線上一點,若|MF|=5,則點M的橫坐標x的值是2,三角形OMF的面積是3$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設a=($\frac{1}{3}$)${\;}^{\frac{4}{5}}$,b=($\frac{1}{4}$)${\;}^{\frac{4}{5}}$,c=($\frac{1}{3}$)${\;}^{\frac{3}{5}}$,則(  )
A.a<b<cB.c<a<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若tan($α+\frac{π}{3}$)=2$\sqrt{3}$,則tan($α-\frac{2π}{3}$)的值是2$\sqrt{3}$,2sin2α-cos2α 的值是-$\frac{43}{52}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.關于直線l,m及平面α,β,下列命題中正確的是(  )
A.若l∥α,α∩β=m,則l∥mB.若l∥α,m∥α,則l∥m
C.若l⊥α,m∥α,則l⊥mD.若l∥α,m⊥l,則m⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.正方體ABCD-A'B'C'D'的棱長為a,連接A'C',A'D,A'B,BD,BC',C'D,得到一個三棱錐A'-BC'D.求:
(1)求異面直線A'D與C'D′所成的角;
(2)三棱錐A'-BC'D的體積.

查看答案和解析>>

同步練習冊答案