已知數(shù)列{an}是等差數(shù)列,若a3+a11=24,a4=3,則{an}的公差是( )
A.1
B.3
C.5
D.6
【答案】分析:(法一)利用等差數(shù)列的性質(zhì)把已知條件轉(zhuǎn)化可得a7=12,利用公式求解.
(法二)把已知條件用等差數(shù)列的首項(xiàng)a1、公差d表示,聯(lián)立解d.
解答:解:(法一)因?yàn)閿?shù)列{an}是等差數(shù)列,a3+a11=24,a4=3
利用等差數(shù)列的性質(zhì)可得2a7=24
所以a7=12,
(法二)設(shè)等差數(shù)列的公差為d
∵a3+a11=24,a4=3

解得a1=-6,d=3
故選 B.
點(diǎn)評(píng):本題法一:主要考查等差數(shù)列的性質(zhì):若m+n=p+q,則am+an=ap+aq,靈活運(yùn)用該性質(zhì)可以簡(jiǎn)化基本運(yùn)算.
法二:主要是運(yùn)用等差數(shù)列的通項(xiàng)公式,利用等差數(shù)列的基本量a1,d表示an,及基本運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義一個(gè)“等積數(shù)列”:在一個(gè)數(shù)列中,如果每一項(xiàng)與它后一項(xiàng)的積都是同一常數(shù),那么這個(gè)數(shù)列叫“等積數(shù)列”,這個(gè)常數(shù)叫做這個(gè)數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,則這個(gè)數(shù)列的前n項(xiàng)和Sn的計(jì)算公式為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一個(gè)數(shù)列中,如果?n∈N*,都有an•an+1•an+2=k(k為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,k叫做這個(gè)數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=3,公積為27,則a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義“等積數(shù)列”:在一個(gè)數(shù)列中,如果每一個(gè)項(xiàng)與它的后一項(xiàng)的積都為同一個(gè)常數(shù),那末這個(gè)數(shù)列叫做等積數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,Tn為數(shù)列{an}前n項(xiàng)的積,則T2011=
51006
2
51006
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們對(duì)數(shù)列作如下定義,如果?n∈N*,都有anan+1an+2=k(k為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,k叫做這個(gè)數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=2,公積為6,則a1+a2+a3+…+a9=
18
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列的定義為:在一個(gè)數(shù)列中,從第二項(xiàng)起,如果每一項(xiàng)與它的前一項(xiàng)的差都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等差數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公差.
(1)類比等差數(shù)列的定義給出“等和數(shù)列”的定義;
(2)已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,求 a18的值,并猜出這個(gè)數(shù)列的通項(xiàng)公式(不要求證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案