(文)
lim
n→∞
n2+2n-1
n2-n-1
=(  )
A.1B.-
1
3
C.-1D.-
7
12
lim
n→∞
n2+2n-1
n2-n-1
=
lim
n→∞
1+
2
n
-
1
n2
1 -
1
n
-
1
n2
=
1+0-0
1-0-0
=1,
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文)
lim
n→∞
n2+2n-1
n2-n-1
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(川中班)(理)在極坐標(biāo)系中,A(1,
π
2
),點(diǎn)B在直線ρcosθ+ρsinθ=0上運(yùn)動(dòng),當(dāng)線段AB長(zhǎng)最短時(shí),點(diǎn)B的極坐標(biāo)為
2
2
4
2
2
,
4

(川中班)(文)實(shí)數(shù)x、y滿足  
y≥0  
x-y≥0 
2x-y-2≥0
,則k=
y-1
x+1
的取值范圍為
[-
1
2
,1)
[-
1
2
,1)

(川中南校班) 
lim
n→∞
(
n
n+2
)n=<u>
e-2
e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•楊浦區(qū)二模)(文)已知向量
a
=(x2+1,-x)
,
b
=(1,2
n2+1
)
(n為正整數(shù)),函數(shù)f(x)=
• 
,設(shè)f(x)在(0,+∞)上取最小值時(shí)的自變量x取值為an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知數(shù)列{bn},其中bn=an+12-an2,設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,求
lim
n→∞
Sn
C
2
n
;
(3)已知點(diǎn)列A1(1,a12)、A2(2,a22)、A3(3,a32)、…、An(n,an2)、…,設(shè)過任意兩點(diǎn)Ai,Aj(i,j為正整數(shù))的直線斜率為kij,當(dāng)i=2008,j=2010時(shí),求直線AiAj的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)二模)(文)計(jì)算
lim
n→∞
2n2+1
3n(n-1)
=
2
3
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案