12.已知復(fù)數(shù)z=(a2-4)+(a+2)i(a∈R),則“a=2”是“z為純虛數(shù)”的(  )
A.充分不必要條件B.必要不充分條件
C.既不充分也不必要條件D.充要條件

分析 由純虛數(shù)的定義可得a值,再根據(jù)充要條件的定義即可判斷.

解答 解:復(fù)數(shù)z=(a2-4)+(a+2)i為純虛數(shù),
∴a2-4=0,且a+2≠0,
解得a=2,
∴a=2”是“z為純虛數(shù)”的充要條件,
故選:D

點評 本題考查了復(fù)數(shù)的定義和充要條件的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)y=f(x)的定義域為R,對于?x∈R,f'(x)<ex,且f(x+1)為偶函數(shù),f(2)=1,則不等式f(x)<ex的解集為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在平面直角坐標(biāo)系xoy中,過點P(0,1)的直線l平分圓C:(x-2)2+y2=1的面積,則直線l的斜率k為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ$<\frac{π}{2})$的圖象過點$P(\frac{π}{3},0)$,圖象上與點P最近的一個頂點是$Q(\frac{7π}{12},-1)$.
(I)求函數(shù)的解析式;并用“五點法”在給定的坐標(biāo)系內(nèi)作出函數(shù)f(x)一個周期的簡圖;
(II)求函數(shù)f(x)的增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.($x+2)(1-\frac{2}{x})^{4}$$(1-\frac{2}{x})^{4}$展開式的常數(shù)項為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如果a>b,那么下列不等式:①a3>b3;②$\frac{1}{a}$<$\frac{1}$;③3a>3b;④lga>lgb.其中恒成立的是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)已知二次函數(shù)y=f(x)的圖象過點(1,-1)(3,3)(-2,8),求f(x)的解析式;
(2)求函數(shù)f(x)=$\frac{2-x}{1+x}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)f(x)是定義在(0,+∞)上的函數(shù),對定義域內(nèi)的任意x,y都滿足f(xy)=f(x)+f(y),且x>1時,f(x)>0.
(1)判斷f(x)在(0,+∞)上的單調(diào)性并證明;
(2)若f(2)=1,解不等式f(x)+f(x-3)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若一系列的函數(shù)解析式相同、值域相同,但定義域不同,則稱這些函數(shù)為“同型異構(gòu)”函數(shù).那么函數(shù)解析式為y=-x2,x∈R,值域為{-1,-9}的“同型異構(gòu)”函數(shù)有( 。
A.10個B.9個C.8個D.7個

查看答案和解析>>

同步練習(xí)冊答案