一個四面體各棱長都為,四個頂點在同一球面上,則此球的表面積為( )
A.3π
B.4π
C.
D.6π
【答案】分析:正四面體擴展為正方體,二者有相同的外接球,通過正方體的對角線的長度就是外接球的直徑,求出球的表面積.
解答:解:由于正四面體擴展為正方體,二者有相同的外接球,所以正方體的棱長為:1,所以正方體的對角線的長度就是外接球的直徑,所以球的半徑為:
所以球的表面積為:4πR2==3π.
故選A.
點評:本題是中檔題,考查正四面體的外接球的表面積的求法,注意正四面體擴展為正方體,二者有相同的外接球是本題解題的關(guān)鍵,考查空間想象能力,計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個四面體各棱長都為
2
,四個頂點在同一球面上,則此球的表面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐P-ABC中,給出下列四個命題:
①如果PA⊥BC,PB⊥AC,那么點P在平面ABC內(nèi)的射影是△ABC的垂心;
②如果點P到△ABC的三邊所在直線的距離都相等,那么點P在平面ABC內(nèi)的射影是△ABC的內(nèi)心;
③如果棱PA和BC所成的角為60?,PA=BC=2,E、F分別是棱PB、AC的中點,那么EF=1;
④三棱錐P-ABC的各棱長均為1,則該三棱錐在任意一個平面內(nèi)的射影的面積都不大于
1
2
;
⑤如果三棱錐P-ABC的四個頂點是半徑為1的球的內(nèi)接正四面體的頂點,則P與A兩點間的球面距離為π-arccos
1
3

其中正確命題的序號是
①④⑤
①④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年安徽省合肥一中高二(上)第一次段考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

一個四面體各棱長都為,四個頂點在同一球面上,則此球的表面積為( )
A.3π
B.4π
C.
D.6π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市巴縣中學(xué)高二(下)期末數(shù)學(xué)訓(xùn)練試卷1(理科)(解析版) 題型:填空題

在三棱錐P-ABC中,給出下列四個命題:
①如果PA⊥BC,PB⊥AC,那么點P在平面ABC內(nèi)的射影是△ABC的垂心;
②如果點P到△ABC的三邊所在直線的距離都相等,那么點P在平面ABC內(nèi)的射影是△ABC的內(nèi)心;
③如果棱PA和BC所成的角為60?,PA=BC=2,E、F分別是棱PB、AC的中點,那么EF=1;
④三棱錐P-ABC的各棱長均為1,則該三棱錐在任意一個平面內(nèi)的射影的面積都不大于
⑤如果三棱錐P-ABC的四個頂點是半徑為1的球的內(nèi)接正四面體的頂點,則P與A兩點間的球面距離為π-arccos
其中正確命題的序號是   

查看答案和解析>>

同步練習(xí)冊答案