6 正三棱柱ABCA1B1C1的底面邊長(zhǎng)為a,側(cè)棱長(zhǎng)為a.

(1)建立適當(dāng)?shù)淖鴺?biāo)系,并寫(xiě)出A、B、A1、C1的坐標(biāo);

(2)求AC1與側(cè)面ABB1A1所成的角.

(1) A(0,0,0),B(0,a,0),A1(0,0,a),C1(-a) ,(2) AC1與側(cè)面ABB1A1所成的角為30°


解析:

 (1)以點(diǎn)A為坐標(biāo)原點(diǎn)O,以AB所在直線為Oy軸,以AA1所在直線為Oz軸,以經(jīng)過(guò)原點(diǎn)且與平面ABB1A1垂直的直線為Ox軸,建立空間直角坐標(biāo)系.

由已知,得A(0,0,0),B(0,a,0),A1(0,0,a),C1(-a).

 (2)取A1B1的中點(diǎn)M,于是有M(0,a),連AM,MC1,

=(-a,0,0),且=(0,a,0),=(0,0a)

由于·=0,·=0,所以MC1⊥面ABB1A1,

AC1AM所成的角就是AC1與側(cè)面ABB1A1所成的角.

=

所以所成的角,即AC1與側(cè)面ABB1A1所成的角為30°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在正三棱柱ABC-A1B1C1中,AB=3,AA1=6,M為AA1上的點(diǎn),且AM=2MA1,P是BC上一點(diǎn),且由P沿棱柱側(cè)面經(jīng)過(guò)棱CC1到M點(diǎn)的最短路線長(zhǎng)為4
2
,設(shè)這條最短路線與C1C的交點(diǎn)為N.求:
(1)該三棱柱的側(cè)面展開(kāi)圖的對(duì)角線長(zhǎng);
(2) PC和NC的長(zhǎng);
(3)此棱柱的表面積;
(4)平面NMP和平面ABC所成二面角(銳角)的大小(用反正切函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在正三棱柱ABC-A1B1C1中,D為棱AA1的中點(diǎn).若截面△BC1D是面積為6的直角三角形,則此三棱柱的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為1,高為h(h>2),動(dòng)點(diǎn)M在側(cè)棱BB1上移動(dòng).設(shè)AM與側(cè)面BB1C1C所成的角為θ.
(1)當(dāng)θ∈[
π
6
π
4
]
時(shí),求點(diǎn)M到平面ABC的距離的取值范圍;
(2)當(dāng)θ=
π
6
時(shí),求向量
AM
BC
夾角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為1,高為h(h>3),點(diǎn)M在側(cè)棱BB1上移動(dòng),并且M到底面ABC的距離為x,且AM與側(cè)面BCC1B1所成的角為α.
(1)若α在區(qū)間[
π
6
,
π
4
]
上變化,求x的變化范圍; 
(2)若α為
π
6
,求AM與BC所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案