7.設(shè)g(x)為定義在R上的奇函數(shù),且g(x)不恒為0,若$f(x)=(\frac{1}{{{a^x}-1}}-\frac{1})g(x)$(a>0且a≠1)為偶函數(shù),則常數(shù)b=( 。
A.-2B.2C.$\frac{1}{2}$D.$-\frac{1}{2}$

分析 若$f(x)=(\frac{1}{{{a^x}-1}}-\frac{1})g(x)$(a>0且a≠1)為偶函數(shù),則函數(shù)h(x)=$\frac{1}{{a}^{x}-1}-\frac{1}$也為奇函數(shù),即h(-x)=-h(x)恒成立,進(jìn)而得到b值.

解答 解:∵g(x)為定義在R上的奇函數(shù),且g(x)不恒為0,
若$f(x)=(\frac{1}{{{a^x}-1}}-\frac{1})g(x)$(a>0且a≠1)為偶函數(shù),
則函數(shù)h(x)=$\frac{1}{{a}^{x}-1}-\frac{1}$也為奇函數(shù),
故h(-x)=-h(x)恒成立,
即$\frac{1}{{a}^{-x}-1}-\frac{1}$+$\frac{1}{{a}^{x}-1}-\frac{1}$=$\frac{1-{a}^{x}}{{a}^{x}-1}-\frac{2}$=$-1-\frac{2}$=0,
解得:b=-2,
故選:A

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的性質(zhì),正確理解并熟練掌握函數(shù)奇偶性的性質(zhì)是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.為了得到函數(shù)y=4cos2x的圖象,只需將函數(shù)$y=4cos(2x+\frac{π}{4})$的圖象上每一個(gè)點(diǎn)( 。
A.橫坐標(biāo)向左平動(dòng)$\frac{π}{4}$個(gè)單位長(zhǎng)度B.橫坐標(biāo)向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度
C.橫坐標(biāo)向左平移$\frac{π}{8}$個(gè)單位長(zhǎng)度D.橫坐標(biāo)向右平移$\frac{π}{8}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c(a≥b),$sin({\frac{π}{3}-A})=sinB$,$asinC=\sqrt{3}sinA$,則a+b的最大值為( 。
A.2B.3C.$2\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2a-x-\frac{4}{x}-3,x∈(-∞,a)}\\{x-\frac{4}{x}-3,x∈[a,+∞)}\end{array}\right.$有且只有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),且2x2=x1+x3,則a=-$\frac{11}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知集合A中只含有1,a2兩個(gè)元素,則實(shí)數(shù)a不能取的值為±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知拋物線(xiàn)C1,:y2=2px上一點(diǎn)M(3,y0)到其焦點(diǎn)F的距離為4,橢圓C2:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{2}}{2}$,且過(guò)拋物線(xiàn)的焦點(diǎn)F.
(1)求拋物線(xiàn)C1和橢圓C2的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)F的直線(xiàn)l1交拋物線(xiàn)C1交于A,B兩不同點(diǎn),交y軸于點(diǎn)N,已知$\overrightarrow{NA}$=$λ\overrightarrow{AF}$,$\overrightarrow{NB}$=μ$\overrightarrow{BF}$,求證:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖所示,AC=BC=1,∠ACB-90°,PA⊥平面ABC,CE∥PA,PA=2CE=2,
(1)求證:平面EPB⊥平面APB
(2)求二面角A-BE-P的正弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.曲線(xiàn)y=$\sqrt{x}$在矩陣$[\begin{array}{l}{0}&{1}\\{1}&{0}\end{array}]$作用下變換所得的圖形對(duì)應(yīng)的曲線(xiàn)方程是y=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若函數(shù)f(x)是一次函數(shù),且f(f(x))=4x+1,則f(x)=$2x+\frac{1}{3},或-2x-1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案