14.如圖,四邊形ABCD中,AB∥DC,AC與BD相交于點(diǎn)E,AE=$\frac{3}{5}$AC,∠ABD的角平分線(xiàn)交AC于點(diǎn)F.
(Ⅰ)求$\frac{CD}{AB}$的值;
(Ⅱ)若AF=$\frac{1}{2}$FC,求證:BD+DC=2AB.

分析 (Ⅰ)利用AB∥DC,$\frac{CD}{AB}$=$\frac{CE}{AE}$=$\frac{2}{3}$,即可求$\frac{CD}{AB}$的值;
(Ⅱ)證明四邊形CDGH是平行四邊形,DC=GH,可得BD+DC=BG+GH=BH.結(jié)合AF=$\frac{1}{2}$FC,證明:BD+DC=2AB.

解答 (Ⅰ)解:∵AE=$\frac{3}{5}$AC,
∴$\frac{AE}{EC}$=$\frac{3}{2}$,
∵AB∥DC,
∴$\frac{CD}{AB}$=$\frac{CE}{AE}$=$\frac{2}{3}$;
(Ⅱ)證明:分別過(guò)點(diǎn)D,C作BF的平行線(xiàn)交AB的延長(zhǎng)線(xiàn)于G,H,則∠ABF=∠BGD,∠EBF=∠BDG.
∵BF平分∠ABD,
∴∠ABF=∠EBF,
∴∠BGD=∠BDG,
∴BD=BG.
∵DG∥CH,DC∥GH,
∴四邊形CDGH是平行四邊形,
∴DC=GH,
∴BD+DC=BG+GH=BH.
∵BF∥CH,
∴$\frac{AB}{BH}=\frac{AF}{FC}$=$\frac{1}{2}$,
∴BH=2AB,
∴BD+DC=2AB.

點(diǎn)評(píng) 本題考查平行線(xiàn)的性質(zhì),平行四邊形的證明,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,右焦點(diǎn)為(2$\sqrt{2}$,0).斜率為1的直線(xiàn)l與橢圓G交于A,B兩點(diǎn),以AB為底邊作等腰三角形,頂點(diǎn)為P(-3,2).
(1)求橢圓G的方程;
(2)求直線(xiàn)AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某市十所重點(diǎn)中學(xué)進(jìn)行高二聯(lián)考共有5000名學(xué)生,為了了解數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機(jī)的抽取若干名學(xué)生在這次測(cè)試中的數(shù)學(xué)成績(jī),制成如下頻率分布表:
分組頻數(shù)頻率
[80,90)
[90,100)0.050
[100,110)0.200
[110,120)360.300
[120,130)0.275
[130,140)12
[140,150]0.050
合計(jì)
(1)根據(jù)上面的頻率分布表,推出①,②,③,④處的數(shù)字分別為3,0.025,0.1,1;
(2)在所給的坐標(biāo)系中畫(huà)出[80,150]上的頻率分布直方圖;
(3)根據(jù)題中的信息估計(jì)總體120分及以上的學(xué)生人數(shù)為2550人;
(4)在抽取的樣本中,在抽取2人,求這兩人分?jǐn)?shù)恰好都在[100,110)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列命題中,是真命題的是( 。
A.?x0∈R,e${\;}^{{x}_{0}}$≤0B.?x∈R,3x>x3
C.a-b=0的充分不必要條件是$\frac{a}$=1D.若p∧q為假,則p∨q為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若等差數(shù)列{an}中,a3=3,則{an}的前5項(xiàng)和S5等于( 。
A.10B.15C.20D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知tan(α+$\frac{π}{4}$)=-3.
(1)求tan(α-π)的值;
(2)求sinαcosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=x3+sinx+2(x∈R),若f(a)=2,則f(-a)的值為( 。
A.5B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2-1=0,a∈R,x∈R},
(1)求A的子集;
(2)若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列函數(shù)中,是偶函數(shù)且不存在零點(diǎn)的是( 。
A.y=x2B.y=$\sqrt{x}$C.y=log2xD.y=($\frac{1}{2}$)|x|

查看答案和解析>>

同步練習(xí)冊(cè)答案