已知變量x,y滿足
2x-y≤0
x-2y+3≥0
x≥0
,則z=log2(x2+y2-4x+2y+4)的最小值是
 
考點:簡單線性規(guī)劃的應(yīng)用
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,設(shè)m=x2+y2-4x+2y+4=(x-2)2+(y+1)2-1,利用目標(biāo)函數(shù)的幾何意義,即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
m=x2+y2-4x+2y+4=(x-2)2+(y+1)2-1,則z=log2(x2+y2-4x+2y+4)=log2m,
則m的幾何意義為動點P(x,y)到C(2,-1)距離的平方減去1,
由圖象可知當(dāng)P位于O點時,m取得最小值,
此時m=4,即z=log24=2.
故答案為:2.
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A是集合P={1,2,3,…,n}的一個k元子集(即由k個元素組成的集合),且A的任何兩個子集的元素之和不相等;而對于集合P的包含集合A的任意k+1元子集B,則存在B的兩個子集,使這兩個子集的元素之和相等.
(1)當(dāng)n=6時,試寫出一個三元子集A.
(2)當(dāng)n=16時,求證:k≤5,并求集合A的元素之和S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
n
=(
3
sin
x
4
,-1),
n
=(cos
x
4
,cos2
x
4
),記f(x)=
m
n
,
(Ⅰ)求f(x)的值域和單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,角A、B、C的對邊分別是a、b、c,且滿足(2a-c)cosB=bcosC,若f(A)=-
1
2
,a=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

形如y=x 
1
xα
(x>0)的函數(shù)稱為“冪指型函數(shù)”,它的求導(dǎo)過程可概括成:取對數(shù)--兩邊對x求導(dǎo)--代入還原;例如:y=xx(x>0),取對數(shù)lny=xlnx,對x求導(dǎo)
1
y
y′=lnx+1,代入還原y′=xx(lnx+1);給出下列命題:
①當(dāng)α=1時,函數(shù)y=x 
1
xα
(x>0)的導(dǎo)函數(shù)是y′=
1-lnx
x2
x 
1
x
(x>0);
②當(dāng)α>0時,函數(shù)y=x 
1
xα
(x>0)在(0,e 
1
α
)上單增,在(e 
1
α
,+∞)上單減;
③當(dāng)b
1
α
e
1
e
時,方程bx=xα(b>0,b≠1,α≠0,x>0)有根;
④當(dāng)α<0時,若方程xα=logbx(b>0,b≠1,x>0)有兩根,則e 
1
αe
<b<1;
其中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從3位男生1位女生中任選兩人,恰好是一男一女的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)集R中,我們定義的大小關(guān)系“>”為全體實數(shù)排了一個“序”,類似地,我們在復(fù)數(shù)集C上也可以定義一個稱為“序”的關(guān)系,記為“?”.定義如下:對于任意兩個復(fù)數(shù)z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R,為虛數(shù)單位),“z1?z2”當(dāng)且僅當(dāng)“a1>a2”或“a1=a2且b1>b2”.現(xiàn)有以下命題:
①若z1?z2,則|z1|?|z2|;
②若z1?z2,則z12?z22;
③若z1?z2,z2?z3,則z1?z3;
④對于復(fù)數(shù)z?0,若z1?z2,則z•z1?z•z2;
其中正確命題的序號的是
 
(寫出所以正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=2sin2x的圖象,需將函數(shù)y=sin2x+
3
cos2x的圖象向右平移至少m個單位(其中m>0),則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體是直三棱柱與圓錐的組合體,其直觀圖和三視圖如圖所示,正視圖為正方形,其中俯視圖中橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若利用計算機(jī)隨機(jī)取點(x,y),其中x∈(-1,1),y∈(-1,1),則所取的點(x,y)滿足y<-x2+1的概率為
 

查看答案和解析>>

同步練習(xí)冊答案