計(jì)算下列各式:
 (1)2
3
×
31.5
×
612
;
 (2)(
p6q
5
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì),根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡(jiǎn)運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)先把根式化為指數(shù)式,再由指數(shù)的運(yùn)算法則進(jìn)行求解.
(2)利用根式的運(yùn)算性質(zhì)直接求解.
解答: 解:(1)2
3
×
31.5
×
612

=2×3
1
2
×3
1
3
×2-
1
3
×3
1
6
×2
2
6

=2 1+(-
1
3
)+
2
6
3
1
2
+
1
3
+
1
6

=2•3
=6.
 (2)(
p6q
5
=|p3q|5
=
p15q,q是奇數(shù)
±p15q,q是偶數(shù)
點(diǎn)評(píng):本題考查指數(shù)式和根式的相互轉(zhuǎn)化和運(yùn)算法則的應(yīng)用,是基礎(chǔ)題,解題時(shí)要注意根式性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a1,a2,a3,a4,a5為自然數(shù).A={a1,a2,a3,a4,a5},B={a12,a22,a32,a42,a52},且a1<a2<a3<a4<a5,并滿足A∩B=﹛a1,a4﹜,a1+a2=10,A∪B中各元素之和為256.
(1)求a1,a4的值;
(2)求集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義在R上的偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞減,如果f(m2-2)>f(m),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:lg(
3+
5
+
2
3+
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若sin(2π-A)=-
2
sin(π-B),
3
cosA=-
2
cos(π-B),求△ABC的三內(nèi)角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商業(yè)地產(chǎn)公司在城區(qū)的某個(gè)地段擁有商鋪100間,當(dāng)每間店鋪每月租金為3000元時(shí),可全部租出,當(dāng)每間商鋪的月租金每增加50元時(shí),未租出的商鋪將會(huì)增加一間,租出的商鋪每月的各種稅費(fèi)支出150元一間,未租出的商鋪每月需支出的相應(yīng)稅費(fèi)為50元一間.
(1)當(dāng)每月的月租金為3600元時(shí),能租出多少間商鋪;
(2)當(dāng)每月的租金為多少時(shí),該公司的月收益最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin(πx+
3
)+cos(πx+
π
6
)的一個(gè)單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下五個(gè)結(jié)論:
①存在實(shí)數(shù)α,使sinα•cosα=1;     
②函數(shù)f(x)=sin(x-
π
2
)(x∈R)
是奇函數(shù);
③α是第二象限角時(shí),tanα=-
sinα
cosα
;  
④函數(shù)f(x)=
1
x
-x的遞減區(qū)間為(-∞,+∞)
⑤函數(shù)f(x)=
x
x+1
的對(duì)稱中心是(-1,1)
其中正確的結(jié)論是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知10x=2,10y=3,則103x-
4y
2
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案