設(shè)數(shù)列{}滿足:a1=2,對(duì)一切正整數(shù)n,都有
(1)探討數(shù)列{}是否為等比數(shù)列,并說(shuō)明理由;
(2)設(shè)
(1)是,理由見解析;(2)證明過(guò)程詳見解析.
解析試題分析:本題主要考查等比數(shù)列的定義、等比數(shù)列的證明、數(shù)學(xué)歸納法、放縮法等數(shù)學(xué)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力和計(jì)算能力.第一問(wèn),通過(guò)對(duì)已知表達(dá)式的移項(xiàng),變形可得出數(shù)列的通項(xiàng),可以用等比數(shù)列的定義證明也可以用數(shù)學(xué)歸納法證明;第二問(wèn),將第一問(wèn)的結(jié)論代入,得到表達(dá)式,法一:利用放縮法和裂項(xiàng)相消法證明,法二:利用數(shù)列的累加法和放縮法證明.
試題解析:⑴由得,
∴對(duì)一切,可知是首項(xiàng)為,公比為的等比數(shù)列. 5分
(通過(guò)歸納猜想,使用數(shù)學(xué)歸納法證明的,亦應(yīng)給分)
(2)由(1)知 6分
證一:
10分
12分
證二:∵ ≥(僅當(dāng)時(shí)等號(hào)成立),故此,≤10分
從而,≤< 12分
考點(diǎn):1.數(shù)學(xué)歸納法;2.累加法;3.放縮法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列中,已知,,(,).
(1)當(dāng),時(shí),分別求的值,判斷是否為定值,并給出證明;
(2)求出所有的正整數(shù),使得為完全平方數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn)以下四個(gè)不等式都是正確的:
;
;
;
.
請(qǐng)你觀察這四個(gè)不等式:
(1)猜想出一個(gè)一般性的結(jié)論(用字母表示);
(2)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145.
(1)求數(shù)列{bn}的通項(xiàng)公式bn;
(2)設(shè)數(shù)列{an}的通項(xiàng)an=loga(其中a>0且a≠1).記Sn是數(shù)列{an}的前n項(xiàng)和,試比較Sn與logabn+1的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列{an}中,a1=1,an+1=,n∈N+,求a2,a3,a4
并猜想數(shù)列的通項(xiàng)公式,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
“無(wú)理數(shù)是無(wú)限小數(shù),而是無(wú)限小數(shù),所以是無(wú)理數(shù)!
這個(gè)推理是 _推理(在“歸納”、“類比”、“演繹”中選擇填空)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com