已知p,q是奇數(shù),求證:方程x2+px+q=0沒有整數(shù)根.

答案:
解析:

  證明:假設(shè)方程有整數(shù)根,

  則

  當為奇數(shù)時,,均為奇數(shù).

  故為奇數(shù),不可能為0.

  當為偶數(shù)時,,均為偶數(shù).

  故為奇數(shù),也不可能為0.

  因此假設(shè)錯誤,原命題成立.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省菏澤市高三5月高考沖刺題理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列

(Ⅰ)若 ,是否存在,有?請說明理由;

(Ⅱ)若(a、q為常數(shù),且aq0)對任意m存在k,有,試求a、q滿足的充要條件;

(Ⅲ)若試確定所有的p,使數(shù)列中存在某個連續(xù)p項的和式數(shù)列中的一項,請證明.

【解析】第一問中,由,整理后,可得,為整數(shù)不存在、,使等式成立。

(2)中當時,則

,其中是大于等于的整數(shù)

反之當時,其中是大于等于的整數(shù),則,

顯然,其中

、滿足的充要條件是,其中是大于等于的整數(shù)

(3)中設(shè)為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),

為偶數(shù)時,式不成立。由式得,整理

時,符合題意。當為奇數(shù)時,

結(jié)合二項式定理得到結(jié)論。

解(1)由,整理后,可得、,為整數(shù)不存在,使等式成立。

(2)當時,則,其中是大于等于的整數(shù)反之當時,其中是大于等于的整數(shù),則,

顯然,其中

、滿足的充要條件是,其中是大于等于的整數(shù)

(3)設(shè)為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),

為偶數(shù)時,式不成立。由式得,整理

時,符合題意。當,為奇數(shù)時,

   由,得

為奇數(shù)時,此時,一定有使上式一定成立。為奇數(shù)時,命題都成立

 

查看答案和解析>>

同步練習冊答案