數(shù)列{}的通項(xiàng)公式為=2n-9,n∈N﹡,當(dāng)前n項(xiàng)和達(dá)到最小時(shí),n等于_________________.

 

【答案】

4

【解析】

試題分析:先由an=2n-49,判斷數(shù)列{an}為等差數(shù)列,從而Sn =n2-8n,結(jié)合二次函數(shù)的性質(zhì)可求.

解:由=2n-9可得- =2(n+1)-9-(2n-9)=2是常數(shù),∴數(shù)列{an}為等差數(shù)列,∴=,且a1=2×1-9=-7,∴ ==n2-8n=(n-4)2-162,結(jié)合二次函數(shù)的性質(zhì)可得,當(dāng)n=4時(shí),和有最小值.故答案為:4.

考點(diǎn):等差數(shù)列的通項(xiàng)公式和求和公式運(yùn)用

點(diǎn)評(píng):本題的考點(diǎn)是等差數(shù)列的通項(xiàng)公式,主要考查了等差數(shù)列的求和公式的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意數(shù)列的函數(shù)性質(zhì)的應(yīng)用.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(教材江蘇版第62頁(yè)習(xí)題7)(1)已知數(shù)列an的通項(xiàng)公式為an=
1
n(n+1)
,則前n項(xiàng)的和
 
;(2)已知數(shù)列an的通項(xiàng)公式為an=
1
n
+
n+1
,則前n項(xiàng)的和
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的數(shù)表中,第i行第j列的數(shù)記為ai,j,且滿足a1,j=2j-1,ai,1=i,ai+1,j+1=ai,j+ai+1,j(i,j∈N*);又記第3行的數(shù)3,5,8,13,22,39,…為數(shù)列{bn}.則
(1)此數(shù)表中的第6行第3列的數(shù)為
20
20
;
(2)數(shù)列{bn}的通項(xiàng)公式為
bn=2n-1+n+1
bn=2n-1+n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的首項(xiàng)為a,公差為d;等差數(shù)列{bn}的首項(xiàng)為b,公差為e,如果cn=an+bn(n≥1),且c1=4,c2=8,數(shù)列{cn}的通項(xiàng)公式為cn=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的通項(xiàng)公式為an=
1
n
+
n+1
,其前n項(xiàng)之和為10,則在平面直角坐標(biāo)系中,直線(n+1)x+y+n=0在y軸上的截距為
-120
-120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中a1=1,且
an+1
an
=1-nan+1
,則此數(shù)列{
1
an
}的通項(xiàng)公式為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案