年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
a |
AB |
a |
AB |
5 |
OB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系中,已知向量(),,動(dòng)點(diǎn)的軌跡為T(mén).
(1)求軌跡T的方程,并說(shuō)明該方程表示的曲線(xiàn)的形狀;
(2)當(dāng)時(shí),已知、,試探究是否存在這樣的點(diǎn): 是軌跡T內(nèi)部的整點(diǎn)(平面內(nèi)橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱(chēng)為整點(diǎn)),且△OEQ的面積?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:廣東省揭陽(yáng)市2010年高考一模(文) 題型:解答題
(本題滿(mǎn)分14分)
在平面直角坐標(biāo)系中,已知向量(),,動(dòng)點(diǎn)的軌跡為T(mén).
(1)求軌跡T的方程,并說(shuō)明該方程表示的曲線(xiàn)的形狀;
(2)當(dāng)時(shí),已知、,試探究是否存在這樣的點(diǎn):是軌跡T內(nèi)部的整點(diǎn)(平面內(nèi)橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱(chēng)為整點(diǎn)),且△OEQ的面積?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆廣東省高一3月月考數(shù)學(xué)試卷(解析版) 題型:解答題
已知向量.
(1)若點(diǎn)三點(diǎn)共線(xiàn),求應(yīng)滿(mǎn)足的條件;
(2)若為等腰直角三角形,且為直角,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省山一中高三熱身練文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿(mǎn)分14分)
在平面直角坐標(biāo)系中,已知向量(),,動(dòng)點(diǎn)的軌跡為.
(1)求軌跡的方程,并說(shuō)明該方程表示的曲線(xiàn)的形狀;
(2)當(dāng)時(shí),過(guò)點(diǎn)(0,1),作軌跡T的兩條互相垂直的弦、,設(shè)、 的中點(diǎn)分別為、,試判斷直線(xiàn)是否過(guò)定點(diǎn)?并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com