【題目】將函數(shù)f(x)=sin(2x+φ)(0<φ<π)的圖象向左平移 個(gè)單位后得到函數(shù)y=g(x)的圖象,若y=g(x)是偶函數(shù),則φ=

【答案】
【解析】解:圖象向左平移 得到f(x+ )=2sin(2x+ +φ),

∴g(x)=2sin(2x+ +φ),

∵g(x)為偶函數(shù),

因此 +φ=kπ+

又0<φ<π,

故φ=

所以答案是:

【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系內(nèi),已知A(3,3)是⊙C上一點(diǎn),折疊該圓兩次使點(diǎn)A分別與圓上不相同的兩點(diǎn)(異于點(diǎn)A)重合,兩次的折痕方程分別為x﹣y+1=0和x+y﹣7=0,若⊙C上存在點(diǎn)P,使∠MPN=90°,其中M、N的坐標(biāo)分別為(﹣m,0)(m,0),則m的最大值為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+4x+a﹣5,g(x)=m4x1﹣2m+7.
(1)若函數(shù)f(x)在區(qū)間[﹣1,1]上存在零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=0時(shí),若對(duì)任意的x1∈[1,2],總存在x2∈[1,2],使f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍;
(3)若y=f(x)(x∈[t,2])的置于為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長(zhǎng)度為6﹣4t?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由. (注:區(qū)間[p,q]的長(zhǎng)度q﹣p)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù) 的圖象與x軸有公共點(diǎn),則m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩艘輪船駛向一個(gè)不能同時(shí)停泊兩艘輪船的碼頭,它們?cè)谝粫円箖?nèi)任何時(shí)刻到達(dá)是等可能的.
(1)已知甲船上有男女乘客各3名,現(xiàn)從中任選3人出來(lái)做某件事情,求所選出的人中恰有一位女乘客的概率;
(2)如果甲船的停泊時(shí)間為4小時(shí),乙船的停泊時(shí)間為2小時(shí),求它們中的任何一條船不需要等待碼頭空出的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx﹣ )(其中A,ω為常數(shù),且A>0,ω>0)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)若f(α+ )= ,f(β+ )= ,且α,β∈(0, ),求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率等于 ,它的一個(gè)短軸端點(diǎn)是(0,2 ).

(1)求橢圓C的方程;
(2)P(2,3)、Q(2,﹣3)是橢圓上兩點(diǎn),A、B是橢圓位于直線PQ兩側(cè)的兩動(dòng)點(diǎn),
①若直線AB的斜率為 ,求四邊形APBQ面積的最大值;
②當(dāng)A、B運(yùn)動(dòng)時(shí),滿(mǎn)足∠APQ=∠BPQ,試問(wèn)直線AB的斜率是否為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的中心在原點(diǎn)O,短軸長(zhǎng)為 ,左焦點(diǎn)為F(﹣c,0)(c>0),直線 與x軸交于點(diǎn)A,且 ,過(guò)點(diǎn)A的直線與橢圓相交于P,Q兩點(diǎn).

(1)求橢圓的方程.
(2)若 ,求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若對(duì)任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,則實(shí)數(shù)m的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案