【題目】若,當x∈[0,1]時,f(x)=x,若在區(qū)間(﹣1,1]內(nèi),有兩個零點,則實數(shù)m的取值范圍是( )
A.B.C.D.
【答案】B
【解析】
根據(jù)當x∈[0,1]時,f(x)=x,當x∈(﹣1,0)時,x+1∈(0,1),得到f(x),故f(x),題目問題轉(zhuǎn)化為函數(shù)y=f(x)與函數(shù)y=m(x)在區(qū)間(﹣1,1]內(nèi)有兩個交點,在同一坐標系內(nèi)畫出兩個函數(shù)的圖象,根據(jù)圖象,利用數(shù)形結(jié)合法即可求出m的取值范圍.
根據(jù)題意,,又當x∈[0,1]時,f(x)=x,
故當x∈(﹣1,0)時,x+1∈(0,1),則f(x)+1,
所以f(x),
故f(x),
因為在區(qū)間(﹣1,1]內(nèi)有兩個零點,
所以方程f(x)=m(x)在區(qū)間(﹣1,1]內(nèi)有兩個根,
所以函數(shù)y=f(x)與函數(shù)y=m(x)在區(qū)間(﹣1,1]內(nèi)有兩個交點,
而函數(shù)y=m(x)恒過定點(,0),在同一坐標系內(nèi)畫出兩個函數(shù)的圖象,如圖所示:
,
當y=m(x)過點(1,1)時,斜率m,
當y=m(x)過點(1,0)時,斜率m=0,
由圖象可知,當0<m時,兩個函數(shù)圖象有兩個交點,
即有兩個零點,
故選:B.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)當時,求證:過原點且與曲線相切的直線有且只有一條;
(2)當時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦距為2,且長軸長是短軸長的倍.
(1)求橢圓的標準方程;
(2)若過橢圓左焦點的直線交橢圓于兩點,點在軸非負半軸上,且點到坐標原點的距離為2,求取得最大值時的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】多面體歐拉定理是指對于簡單多面體,其各維對象數(shù)總滿足一定的數(shù)量關(guān)系,在三維空間中,多面體歐拉定理可表示為:頂點數(shù)+表面數(shù)-棱長數(shù)=2.在數(shù)學上,富勒烯的結(jié)構(gòu)都是以正五邊形和正六邊形面組成的凸多面體,例如富勒烯(結(jié)構(gòu)圖如圖)是單純用碳原子組成的穩(wěn)定分子,具有60個頂點和32個面,其中12個為正五邊形,20個為正六邊形.除外具有封閉籠狀結(jié)構(gòu)的富勒烯還可能有,,,,,,,等,則結(jié)構(gòu)含有正六邊形的個數(shù)為( )
A.12B.24C.30D.32
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的離心率為,與坐標軸分別交于A,B兩點,且經(jīng)過點Q(,1).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若P(m,n)為橢圓C外一動點,過點P作橢圓C的兩條互相垂直的切線l1、l2,求動點P的軌跡方程,并求△ABP面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點O為極點,x軸正半軸為極軸,建立極坐標系,點,()在曲線C:上,直線l過點且與垂直,垂足為P.
(Ⅰ)當時,求在直角坐標系下點P坐標和l的方程;
(Ⅱ)當M在C上運動且P在線段上時,求點P在極坐標系下的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的長軸長為,右頂點到左焦點的距離為,、分別為橢圓的左、右兩個焦點.
(1)求橢圓的方程;
(2)已知橢圓的切線(與橢圓有唯一交點)的方程為,切線與直線和直線分別交于點、,求證:為定值,并求此定值;
(3)設(shè)矩形的四條邊所在直線都和橢圓相切(即每條邊所在直線與橢圓有唯一交點),求矩形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐中,是邊長為2的正三角形,是等腰直角三角形,.
(I)證明:平面平面ABC;
(II)點E在BD上,若平面ACE把三棱錐分成體積相等的兩部分,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com