數(shù)列{an}滿(mǎn)足an=數(shù)學(xué)公式,其中k∈N*,設(shè)數(shù)學(xué)公式,則f(2013)-f(2012)等于


  1. A.
    22012
  2. B.
    22013
  3. C.
    42012
  4. D.
    42013
C
分析:利用通項(xiàng)公式把奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別計(jì)算,利用等差數(shù)列的前n項(xiàng)和公式及遞推關(guān)系即可得出.
解答:∵f(n)=
=()+(
=[1+3+5+…+(2n-1)]+
=+f(n-1)
=4n-1+f(n-1).
∴f(n)-f(n-1)=4n-1
當(dāng)n=2013時(shí),則f(2013)-f(2012)=42012
故選C.
點(diǎn)評(píng):正確理解通項(xiàng)公式并把奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別計(jì)算,熟練掌握等差數(shù)列的前n項(xiàng)和公式及遞推關(guān)系是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•浙江模擬)數(shù)列{an}滿(mǎn)足an+1+an=4n-3(n∈N*
(Ⅰ)若{an}是等差數(shù)列,求其通項(xiàng)公式;
(Ⅱ)若{an}滿(mǎn)足a1=2,Sn為{an}的前n項(xiàng)和,求S2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)镽,數(shù)列{an}滿(mǎn)足an=f(an-1)(n∈N*且n≥2).
(Ⅰ)若數(shù)列{an}是等差數(shù)列,a1≠a2,且f(an)-f(an-1)=k(an-an-1)(k為非零常數(shù),n∈N*且n≥2),求k的值;
(Ⅱ)若f(x)=kx(k>1),a1=2,bn=lnan(n∈N*),數(shù)列{bn}的前n項(xiàng)和為Sn,對(duì)于給定的正整數(shù)m,如果
S(m+1)nSmn
的值與n無(wú)關(guān),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an} 滿(mǎn)足
an+12an2
=p
(p為正常數(shù),n∈N*),則稱(chēng){an} 為“等方比數(shù)列”.則“數(shù)列{an} 是等方比數(shù)列”是“數(shù)列{an} 是等比數(shù)列”的
必要非充分
必要非充分
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浦東新區(qū)二模)數(shù)列{an}滿(mǎn)足an+1=
4an-2
an+1
(n∈N*).
①存在a1可以生成的數(shù)列{an}是常數(shù)數(shù)列;
②“數(shù)列{an}中存在某一項(xiàng)ak=
49
65
”是“數(shù)列{an}為有窮數(shù)列”的充要條件;
③若{an}為單調(diào)遞增數(shù)列,則a1的取值范圍是(-∞,-1)∪(1,2);
④只要a1
3k-2k+1
3k-2k
,其中k∈N*,則
lim
n→∞
an
一定存在;
其中正確命題的序號(hào)為
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江蘇二模)已知各項(xiàng)均為正整數(shù)的數(shù)列{an}滿(mǎn)足an<an+1,且存在正整數(shù)k(k>1),使得a1+a2+…+ak=a1•a2…ak,an+k=k+an(n∈N*).
(1)當(dāng)k=3,a1a2a3=6時(shí),求數(shù)列{an}的前36項(xiàng)的和S36
(2)求數(shù)列{an}的通項(xiàng)an;
(3)若數(shù)列{bn}滿(mǎn)足bnbn+1=-21•(
12
)an-8
,且b1=192,其前n項(xiàng)積為T(mén)n,試問(wèn)n為何值時(shí),Tn取得最大值?

查看答案和解析>>

同步練習(xí)冊(cè)答案