A. | $\frac{1}{2}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{4}$ |
分析 由題意可得 m=2sinx1+cosx1=2sinx2+cosx2,即 2sinx1-2sinx2=cosx2-cosx1,運(yùn)用和差化積公式和同角的基本關(guān)系式,計(jì)算即可得到所求.
解答 解:∵x1,x2是函數(shù) f(x)=2sinx+cosx-m在[0,π]內(nèi)的兩個(gè)零點(diǎn),
即 x1,x2是方程2sinx+cosx=m在[0,π]內(nèi)的兩個(gè)解,
∴m=2sinx1+cosx1=2sinx2+cosx2,∴2sinx1-2sinx2=cosx2-cosx1,
∴2×2×cos$\frac{{x}_{1}{+x}_{2}}{2}$ sin$\frac{{x}_{1}{-x}_{2}}{2}$=-2sin$\frac{{x}_{1}{+x}_{2}}{2}$sin$\frac{{x}_{2}{-x}_{1}}{2}$,∴2cos$\frac{{x}_{1}{+x}_{2}}{2}$=sin$\frac{{x}_{1}{+x}_{2}}{2}$,
∴tan$\frac{{x}_{1}{+x}_{2}}{2}$=2,∴sin(x1+x2)=$\frac{2tan(\frac{{x}_{1}{+x}_{2}}{2})}{1{+tan}^{2}\frac{{x}_{1}{+x}_{2}}{2}}$=$\frac{4}{5}$,
故選:C.
點(diǎn)評(píng) 本題考查函數(shù)方程的轉(zhuǎn)化思想,函數(shù)零點(diǎn)問題的解法,考查三角函數(shù)的恒等變換,同角基本關(guān)系式的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 兩條直線都和同一個(gè)平面平行,則這兩條直線平行 | |
B. | 兩條直線沒有公共點(diǎn),則這兩條直線平行 | |
C. | 兩條直線都和第三條直線垂直,則這兩條直線平行 | |
D. | 一條直線和一個(gè)平面內(nèi)所有直線沒有公共點(diǎn),則這條直線和這個(gè)平面平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?n∈N,3n<n2+1 | B. | $?{n_0}∈N,{3^{n_0}}<n_0^2+1$ | ||
C. | ?n∈N,3n≤n2+1 | D. | $?{n_0}∈N,{3^{n_0}}≥n_0^2+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
文科生 | 理科生 | 合計(jì) | |
獲獎(jiǎng) | 5 | ||
不獲獎(jiǎng) | |||
合計(jì) | 200 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=-3或4x+3y-15=0 | B. | 4x-3y+15=0 | ||
C. | 4x+3y-15=0 | D. | x=-3或4x-3y+15=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com