分析 (1)根據(jù)已知的遞推關(guān)系,可以構(gòu)造出我們熟悉的等差數(shù)列.再用等差數(shù)列的性質(zhì)進行求解.
(2)利用數(shù)學(xué)歸納法的證明步驟,證明即可.
解答 解:(1)根據(jù)a1=1,an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$,a1=1,a2=$\frac{2}{3}$,
a3=$\frac{1}{2}$;
a4=$\frac{2}{5}$;
an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$,得2an+1+an+1an=2an,
兩邊同時除以an+1an,得到$\frac{2}{{a}_{n+1}}$-$\frac{2}{{a}_{n}}$=1,
所以數(shù){$\frac{2}{{a}_{n}}$}是公差為1的等差數(shù)列,且$\frac{2}{{a}_{1}}$=2,
所以$\frac{2}{{a}_{n}}$=n+1,所以an=$\frac{2}{n+1}$.
(2)①由(1)已得當(dāng)n=1時,命題成立;
②假設(shè)n=k時,命題成立,即ak=$\frac{2}{k+1}$,
當(dāng)n=k+1時,$\frac{2}{{a}_{k+1}}-\frac{2}{{a}_{k}}=1$,∴$\frac{2}{{a}_{n+1}}$=1+$\frac{2}{\frac{2}{k+1}}$=k+2,∴ak+1=$\frac{2}{k+2}$,
即當(dāng)n=k+1時,命題成立.
根據(jù)①②得n∈N+,an=$\frac{2}{n+1}$都成立.
這個數(shù)列的通項公式an=$\frac{2}{n+1}$.
點評 構(gòu)造數(shù)列是對已知數(shù)列的遞推關(guān)系式變形后發(fā)現(xiàn)規(guī)律,創(chuàng)造一個等差或等比數(shù)列,借此求原數(shù)列的通項公式,是考查的重要內(nèi)容.同時考查數(shù)學(xué)歸納法的應(yīng)用,考查邏輯推理能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\widehat{y}$=x+3 | B. | $\widehat{y}$=-x+3 | C. | $\widehat{y}$=-x-3 | D. | $\widehat{y}$=-2x+4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${(x-2)^2}+{(y+\frac{3}{2})^2}=\frac{25}{4}$ | B. | ${(x-2)^2}+{(y-\frac{3}{2})^2}=\frac{25}{4}$ | ||
C. | ${(x+2)^2}+{(y-\frac{3}{2})^2}=\frac{25}{4}$ | D. | ${(x+2)^2}+{(y+\frac{3}{2})^2}=\frac{25}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
商店名稱 | A | B | C | D | E |
銷售額x(千萬元) | 3 | 5 | 6 | 7 | 9 |
利潤額y(百萬元) | 2 | 3 | 3 | 4 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com