【題目】如圖,天津之眼,全稱天津永樂橋摩天輪,是世界上唯一一個橋上瞰景摩天輪,是天津的地標(biāo)之一 .永樂橋分上下兩層,上層橋面預(yù)留了一個長方形開口,供摩天輪輪盤穿過,摩天輪的直徑為110米,外掛裝48個透明座艙,在電力的驅(qū)動下逆時針勻速旋轉(zhuǎn),轉(zhuǎn)一圈大約需要30分鐘.現(xiàn)將某一個透明座艙視為摩天輪上的一個點,當(dāng)點到達(dá)最高點時,距離下層橋面的高度為113米,點在最低點處開始計時.
(1)試確定在時刻 (單位:分鐘)時點距離下層橋面的高度 (單位:米);
(2)若轉(zhuǎn)動一周內(nèi)某一個摩天輪透明座艙在上下兩層橋面之間的運(yùn)行時間大約為5分鐘,問上層橋面距離下層橋面的高度約為多少米?
【答案】(1)米.(2)米.
【解析】
(1)如圖,建立平面直角坐標(biāo)系,以為始邊,為終邊的角為,計算得到答案.
(2)根據(jù)對稱性,上層橋面距離下層橋面的高度為點在分鐘時距離下層橋面的高度,計算得到答案.
(1)如圖,建立平面直角坐標(biāo)系.由題可知在分鐘內(nèi)所轉(zhuǎn)過的角為,
因為點在最低點處開始計時,所以以為始邊,為終邊的角為,
所以點的縱坐標(biāo)為,
則(),
故在分鐘時點距離下層橋面的高度為(米).
(2)根據(jù)對稱性,上層橋面距離下層橋面的高度為點在分鐘時距離下層橋面的高度.
當(dāng)時,
故上層橋面距離下層橋面的高度約為米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某學(xué)校高三年級學(xué)生的數(shù)學(xué)成績,從中抽取名學(xué)生的數(shù)學(xué)成績(百分制)作為樣本,按成績分成組:,,,,,頻率分布直方圖如圖所示.成績落在中的人數(shù)為.
(Ⅰ)求和的值;
(Ⅱ)根據(jù)樣本估計總體的思想,估計該校高三年級學(xué)生數(shù)學(xué)成績的平均數(shù)和中位數(shù);
(Ⅲ)成績在分以上(含分)為優(yōu)秀,樣本中成績落在中的男、女生人數(shù)比為,成績落在中的男、女生人數(shù)比為,完成列聯(lián)表,并判斷是否有的把握認(rèn)為數(shù)學(xué)成績優(yōu)秀與性別有關(guān).
參考公式和數(shù)據(jù):.
男生 | 女生 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,且對所有的實數(shù),等式都成立,其、、、、、、、,、.
(1)如果函數(shù),,求實數(shù)的值;
(2)設(shè)函數(shù),直接寫出滿足的兩個函數(shù);
(3)如果方程無實數(shù)解,求證:方程無實解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左右焦點分別為, ,左頂點為,上頂點為, 的面積為.
(1)求橢圓的方程;
(2)設(shè)直線: 與橢圓相交于不同的兩點, , 是線段的中點.若經(jīng)過點的直線與直線垂直于點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若.
(1)討論的單調(diào)性;
(2)若對任意,關(guān)于的不等式在區(qū)間上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若不等式ax2+bx+c>0的解集為{x|x<-2或x>4},則對于函數(shù)f(x)=ax2+bx+c有( )
A.f(5)<f(2)<f(-1)B.f(2)<f(5)<f(-1)
C.f(-1)<f(2)<f(5)D.f(2)<f(-1)<f(5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)若,求直線被曲線截得的線段的長度;
(Ⅱ)若,在曲線上求一點,使得點到直線的距離最小,并求出最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的方程有兩個不同的實數(shù)根,求證:;
(2)若存在使得成立,求實數(shù)的取值范圍.(其中為自然對數(shù)的底數(shù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù):
單價x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回歸直線方程=bx+a;(其中,,,,);
(2)預(yù)計在今后的銷售中,銷量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入-成本)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com