(log33+log39)(log32+log38)=
 
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)對數(shù)的運算性質(zhì)即可得到答案.
解答: 解:(log33+log39)(log32+log38)=(1+2)×log316=12log32,
故答案為:12log32
點評:本題考查了對數(shù)的運算性質(zhì),屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)對于任意x.∈R,都有f(x+4)=-
1
f(x)
,設an=f(n)(n∈N),則
f(200)+f(201)+f(202)+f(203)
f(8)+f(9)+f(10)+f(11)
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程組
x-y+1=0
2x+y-4=0
的解集可表示為:(1)(1,2);(2){(1,2)};(3){(x,y)|x=1,y=2};(4)
x=1
y=2
;(5){(x,y)|
x=1
y=2
},其中正確的個數(shù)有
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

3
的正弦值、余弦值和正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AD∥BC,BC⊥CD=4,已知AD=5,BC=4,CD=
3
,點E,F(xiàn)分別在AB,AD上,且EF⊥AB,沿EF將△AEF折起到△A′EF的位置,使A′E⊥EB,連接A′B,A′C,A′D
(1)求證:A′E⊥平面BCDFE;
(2)試確定點E的位置,使平面A′EF與平面A′BC所成的二面角的余弦值為
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=
cosx-
1
2
的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
a
,
b
滿足|
a
|=|
b
|=|
a
+
b
|=1,則
a
b
的值為
 
a
b
的夾角是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD,側(cè)面PAD⊥底面ABCD,側(cè)面PAD為等邊三角形,底面ABCD為棱形且∠DAB=
π
3

(Ⅰ)求證:PB⊥AD;
(Ⅱ)求平面PAB與平面PCD所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1在Rt△ABC中,∠ABC=90°,D、E分別為線段AB、AC的中點,AB=4,BC=
2
,以D為折痕,將Rt△ADE折起到圖2的位置,使平面A′DE⊥平面DBCE,連接A′C′,A′B′,設F是線段A′C上的動點,滿足
CF
=λ
CA′

(1)證明:平面FBE⊥平面A′DC;
(2)若二面角F-BE-C的大小為45°,求λ的值.

查看答案和解析>>

同步練習冊答案