已知橢圓(a>b>0)的離心率為,以原點為圓心,橢圓短半軸長半徑的圓與直線y=x+ 相切.
(1)求橢圓的方程;
(2)設直線與橢圓在軸上方的一個交點為,是橢圓的右焦點,試探究以
直徑的圓與以橢圓長軸為直徑的圓的位置關系.
(1) ; (2)兩圓心距為,所以兩圓內切.

試題分析:(1)由于e= ∴           1分
 ∴           3分
         4分
所以橢圓的方程為:             5分
(2)由(1)可知,直線與橢圓的一個交點為,
則以為直徑的圓方程是,圓心為,半徑為        9分
以橢圓長軸為直徑的圓的方程是,圓心是,半徑是          11分
兩圓心距為,所以兩圓內切.            14分
點評:中檔題,本題橢圓的標準方程時,應用橢圓的幾何性質,屬于常見類型。曲線關系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題研究圓與圓的位置關系,注意考查圓心距與半徑和(差)的關系。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知拋物線的準線經過橢圓的左焦點,且經過拋物線與橢圓兩個交點的弦過拋物線的焦點,則橢圓的離心率為_____________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知曲線Cy=2x2,點A(0,-2)及點B(3,a),從點A觀察點B,要實現(xiàn)不被曲線C擋住,則實數(shù)a的取值范圍是(  )
A.(4,+∞)B.(-∞,4)
C.(10,+∞)D.(-∞,10)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓mx2 + ny2 = 1與直線x+y-1=0交于A、B兩點,過原點與線段AB中點的直線的斜率為,則=(  )
A.     B.        C.      D. 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過雙曲線左焦點的直線與以右焦點為圓心、為半徑的圓相切于A點,且,則雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線l過雙曲線C的一個焦點,且與C的對稱軸垂直,lC交于A、B兩點,C的實軸長的2倍,則雙曲線C的離心率為(    )
A.B.2C.D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓具有性質:若是橢圓為常數(shù)上關于原點對稱的兩點,點是橢圓上的任意一點,若直線的斜率都存在,并分別記為,,那么之積是與點位置無關的定值
試對雙曲線為常數(shù)寫出類似的性質,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的左右焦點分別為,且恰為拋物線的焦點,設雙曲線與該拋物線的一個交點為,若是以為底邊的等腰直角三角形,則雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已經雙曲線x-my=m(m>0)的一條漸近線與直線2x-y+3=0垂直,則該雙曲線的準線方程為
A.x=B.x=C.x=D.x=

查看答案和解析>>

同步練習冊答案