9.已知$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(x,3),且$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow$|=( 。
A.3B.5C.$\sqrt{5}$D.3$\sqrt{5}$

分析 由向量垂直的性質(zhì)得$\overrightarrow{a}•\overrightarrow$=-x+6=0,求出$\overrightarrow$=(6,3),由此能求出|$\overrightarrow$|.

解答 解:∵$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(x,3),且$\overrightarrow{a}$⊥$\overrightarrow$,
∴$\overrightarrow{a}•\overrightarrow$=-x+6=0,
解得x=6.
∴$\overrightarrow$=(6,3),
∴|$\overrightarrow$|=$\sqrt{36+9}$=3$\sqrt{5}$.
故選:D.

點評 本題考查向量的模的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意平面向量坐標(biāo)運算法則的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.從1,2,3,4,5,6這6個數(shù)字中任取三個數(shù)字,其中:①至少有一個偶數(shù)與都是偶數(shù);②至少有一個偶數(shù)與都是奇數(shù);③至少有一個偶數(shù)與至少有一個奇數(shù);④恰有一個偶數(shù)與恰有兩個偶數(shù).上述事件中,是互斥但不對立的事件是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某學(xué)校有老師100人,男學(xué)生600人,女學(xué)生500人,現(xiàn)用分層抽樣的方法從全體師生中抽取一個容量為n的樣本,已知女學(xué)生一共抽取了40人,則n的值是( 。
A.96B.192C.95D.190

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.對于任意向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$,下列命題中正確的有幾個( 。
(1)|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$||$\overrightarrow$|(2)|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|((3)($\overrightarrow{a}$•$\overrightarrow$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$•$\overrightarrow{c}$)(4)$\overrightarrow{a}$•$\overrightarrow{a}$=|$\overrightarrow{a}$|2
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)若m=-1求A∩B;
(2)若A∩B=∅,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.計算:sin43°sin17°-cos43°cos17°=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知y=2${\;}^{co{s}^{2}\frac{1}{x}}$,則y′=2${\;}^{co{s}^{2}\frac{1}{x}}$ln2sin$\frac{2}{x}$•$\frac{1}{{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.拋物線y2=2x的準(zhǔn)線方程為( 。
A.x=1B.x=$\frac{1}{2}$C.x=-1D.x=-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,若輸入n=2017,輸出S的值為0,則f(x)的解析式可以是( 。
A.$f(x)=sin(\frac{π}{3}x)$B.$f(x)=sin(\frac{π}{2}x)$C.$f(x)=cos(\frac{π}{3}x)$D.$f(x)=cos(\frac{π}{2}x)$

查看答案和解析>>

同步練習(xí)冊答案