某校共有高中學(xué)生1000人,其中高一年級(jí)400人,高二年級(jí)340人,高三年級(jí)260人,現(xiàn)采用分層抽樣抽取容量為50的樣本,那么高一、高二、高三各年級(jí)抽取人數(shù)分別為(  )
A、20、17、13
B、20、15、15
C、40、34、26
D、20、20、10
考點(diǎn):分層抽樣方法
專題:概率與統(tǒng)計(jì)
分析:根據(jù)方程抽樣的定義,建立方程即可得到結(jié)論.
解答: 解:抽取比例為
50
1000
=
1
20
,
故高一抽取400×
1
20
=20,
高二抽取340×
1
20
=17,
高三抽取260×
1
20
=13.
故選:A.
點(diǎn)評(píng):本題主要考查分層抽樣的應(yīng)用,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列各式中正確的是( 。
A、tan
7
>tan
7
B、tan(-
13π
4
)<tan(-
17π
5
C、tan4>tan3
D、tan 281°>tan 665°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線f(x)=
3
sinωx+cosωx關(guān)于直線x=
π
2
對(duì)稱,當(dāng)ω取最小正數(shù)時(shí)( 。
A、f(x)在(0,
π
6
)單調(diào)遞增
B、f(x)在(
π
6
π
3
)單調(diào)遞增
C、f(x)在(-
π
6
,0)單調(diào)遞減
D、f(x)在(-
π
3
,-
π
6
)單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(a,b),B(x,y)為拋物線y=x2上兩點(diǎn),且x>a,記|AB|=g(x).若函數(shù)g(x)在定義域(a,+∞)上單調(diào)遞增,則點(diǎn)A的坐標(biāo)不可能是( 。
A、(1,1)
B、(0,0)
C、(-1,1)
D、(-2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=3-4i,則|z|=( 。
A、3B、4C、1D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某車間共有12名工人,隨機(jī)抽取6名,他們某日加工零件個(gè)數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).
(Ⅰ)根據(jù)莖葉圖計(jì)算樣本均值;
(Ⅱ)日加工零件個(gè)數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4cosωx•sin(ωx-
π
6
)+1(ω>0)的最小正周期是π.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求f(x)在[
π
8
,
8
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(
π
2
+x
)cosx-sinxcos(π-x).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,已知A為銳角,f(A)=1,BC=2,B=
π
3
,求AC邊的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0.
(1)當(dāng)ω=2時(shí),x∈[-
π
6
,
π
3
],求f(x)的值域;
(2)若y=f(x)在[-
π
4
3
]單調(diào)遞增,求ω的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案