若點P(x0,y0)在橢圓
x2
a2
+
y2
b2
=1內(nèi),求被點P所平分的中點弦的方程.
考點:直線與圓錐曲線的關(guān)系
專題:圓錐曲線的定義、性質(zhì)與方程
分析:首先設(shè)出被點P所平分的中點弦的兩個端點的坐標(biāo),利用兩點在橢圓上,代入橢圓方程,利用點差法,求斜率,然后再代入直線的點斜式方程,求出被點P所平分的中點弦的方程即可.
解答: 解:設(shè)被點P所平分的中點弦的兩個端點的坐標(biāo)為A(x1,y1),B(x2,y2),
x12
a2
+
y12
b2
=1
x22
a2
+
y22
b2
=1
,
可得
(x1+x2)(x1-x2)
a2
+
(y1+y2)(y1-y2)
b2
=0;
因為M(x0,y0)為AB的中點,
所以x1+x2=2x0,y1+y2=2y0,
2x0(x1-x2)
a2
+
2y0(y1-y2)
b2
=0,
所以直線AB的斜率kAB=-
x0b2
y0a2

則被點P所平分的中點弦的方程為:y=-
x0b2
y0a2
(x-x0)+y0,
x0x
a2
+
y0y
b2
=
x02
a2
+
y02
b2
點評:本題主要考查了橢圓的性質(zhì)的運用,考查了直線的斜率、直線方程的求法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓M:
x2
a2
+
y2
3
=1(a>0)的一個焦點為F(-1,0),左右頂點分別為A,B.經(jīng)過點F的直線l與橢圓M交于C,D兩點.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線l的斜率為
1
2
,求橢圓上到l的距離為
3
5
5
的點的個數(shù);
(Ⅲ)記△ABD與△ABC的面積分別為S1和S2,求|S1-S2|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aln(x+1)+
1
2
x2-ax+1(a>0).
(1)求函數(shù)y=f(x)在點(0,f(0))處的切線方程;
(2)當(dāng)a>1時,求函數(shù)y=f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-
1
2
x2-2x-
2
3

(1)求函數(shù)f(x)的單調(diào)遞增、遞減區(qū)間;
(2)當(dāng)x∈[-1,1]時,f(x)<m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)上任意一點A(x0,y0)任意做兩條傾斜角互補(bǔ)的直線交橢圓于B、C兩點,求直線BC的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)新產(chǎn)品需一種新零件,可外購也可自產(chǎn),如果外購每個價格為1.10元,如果自產(chǎn)固定成本將增加800元,并且生產(chǎn)這種零件的每個材料費和勞力費等支出合計0.06元,試決定該廠自產(chǎn)還是外購這種零件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x2+1),g(x)=
1
x2-1
+a,求f(x)=g(x)的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一束光線從點F1(-1,0)出發(fā),經(jīng)直線l:x+2y+6=0上一點M反射后,恰好穿過點F2(1,0).
(1)求點F1關(guān)于直線l的對稱點F′1的坐標(biāo);
(2)求以F1、F2為焦點且過點M的橢圓C的方程;
(3)若P是(2)中橢圓C上的動點,求
PF1
PF2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=xlnx在x0處的函數(shù)值與導(dǎo)數(shù)值之和等于1,則x0的值等于
 

查看答案和解析>>

同步練習(xí)冊答案