【題目】設(shè)函數(shù)f(x)= ,(a∈R)
(1)若f(x)在x=0處取得極值,確定a的值.
(2)若f(x)在R上為增函數(shù),求a的取值范圍.

【答案】
(1)解:函數(shù)f(x)=

可得f′(x)=

由f(x)在x=0處取得極值得f′(0)=0,解得a=1


(2)解:由(1)得f′(x)= ,因?yàn)閒(x)在R上增函數(shù),

∴f′(x)≥0恒成立,即cosx﹣sinx≥a恒成立,

sin( ﹣x)≥a恒成立,

∴a≤﹣


【解析】(1)求出函數(shù)的導(dǎo)數(shù),利用函數(shù)的極值,轉(zhuǎn)化求解a即可.(2)利用函數(shù)的單調(diào)性,推出不等式,然后求解a的范圍即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減),還要掌握函數(shù)的極值與導(dǎo)數(shù)(求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在 中,內(nèi)角 , , 所對(duì)的邊分別為 , ,已知 .
(1)當(dāng) 時(shí),求 的面積;
(2)求 周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l經(jīng)過直線l1:2x﹣y﹣1=0與直線l2:x+2y﹣3=0的交點(diǎn)P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓C:(x﹣a)2+y2=8相交于P,Q兩點(diǎn),且 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)(1,﹣2)和( ,0)在直線l:ax﹣y﹣1=0(a≠0)的兩側(cè),則直線l的傾斜角的取值范圍是(
A.( ,
B.( ,
C.( ,
D.(0, )∪( ,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓上的點(diǎn)A(2,3)關(guān)于直線x+2y=0的對(duì)稱點(diǎn)仍在圓上,且與直線x﹣y+1=0相交的弦長為2 ,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線y2=4x的焦點(diǎn)為F,過點(diǎn)(0,3)的直線與拋物線交于A,B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)D,若|AF|+|BF|=6,則點(diǎn)D的橫坐標(biāo)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,角A、B、C的對(duì)邊分別為a、b、c,若a2=b2+bc,則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x﹣8,g(x)=2x2﹣4x﹣16,
(1)求不等式g(x)<0的解集;
(2)若對(duì)一切x>5,均有f(x)≥(m+2)x﹣m﹣15成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按右面的程序框圖運(yùn)行后,輸出的S應(yīng)為( )

A.26
B.35
C.40
D.57

查看答案和解析>>

同步練習(xí)冊(cè)答案