為了解某地區(qū)高三學(xué)生的身體發(fā)育情況,抽查了該地區(qū)100名高三男生的體重.根據(jù)抽樣測量后的男生體重(單位:kg)數(shù)據(jù)繪制的頻率分布直方圖如圖所示,則這100名學(xué)生中體重值在區(qū)間[56.5,64.5)的人數(shù)是
 
考點:頻率分布直方圖
專題:概率與統(tǒng)計
分析:由頻率分布直方圖,得出體重值在區(qū)間[56.5,64.5)的頻率,從而求出對應(yīng)的頻數(shù).
解答: 解:根據(jù)頻率分布直方圖,得:
體重值在區(qū)間[56.5,64.5)的頻率是:(0.03+0.05+0.050.07)×2=0.40;
∴體重值在區(qū)間[56.5,64.5)的頻數(shù)是:100×0.40=40.
故答案為:40.
點評:本題考查了頻率分布直方圖的應(yīng)用問題,解題時應(yīng)從圖形求出題目中所需要的數(shù)據(jù),進行解答,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+bln(x+1).
(1)若x=1時,函數(shù)f(x)取最小值,求實數(shù)b的值;
(2)若函數(shù)f(x)在定義域上是單調(diào)函數(shù),求實數(shù)b的取值范圍;
(3)若b=-1,證明對任意正整數(shù)n,不等式
n
k=1
f(
1
k
)<1+
1
23
+
1
33
+…+
1
n3
都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={(x,y)|(x-1)2+y2≤25},B={(x,y)|(x+1)2+y2≤25},C={(x,y)||x|≤t,|y|≤t,t>0},當C⊆(A∩B)時,t的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x4(x+3)8=a0+a1(x+2)+a2(x+2)2+…+a12(x+2)12,則log2(a1+a3+…+a11)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①已知ab≠0,若a-b=1,則a3-b3-ab-a2-b2=0;
②若函數(shù)f(x)=(x-a)(x+2)為偶函數(shù),則實數(shù)a的值為-2;
③圓x2+y2-2x=0上兩點P,Q關(guān)于直線kx-y+2=0對稱,則k=2;
④若tanθ=2,則cos2θ=-
3
5

其中真命題是
 
(填上所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)一個總體由編號為01,02,…,29,30的30個個體組成.利用下面的隨機數(shù)表選取4個個體,選取方法是從隨機數(shù)表第2行的第3列數(shù)字0開始由左到右依次選取兩個數(shù)字,則選出來的第4個個體的編號為
 

78 16 65 72 08  02 63 14 07 02  43 69 69 38 74
32 04 94 23 49  55 80 20 36 35  48 69 97 28 01

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=i(1-i)(其中i為虛數(shù)單位),則|z|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項和,Sn=kn2+n,n∈N*,其中k是常數(shù).若對于任意的m∈N*,am,a2m,a4m成等比數(shù)列,則k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于各項均為整數(shù)的數(shù)列{an},如果ai+i(i=1,2,3,…)為完全平方數(shù),則稱數(shù)列{an}具有“P性質(zhì)”,如果數(shù)列{an}不具有“P性質(zhì)”,只要存在與{an}不是同一數(shù)列的{bn},且{bn}同時滿足下面兩個條件:①b1,b2,b3,…bn是a1,a2,a3,…,an的一個排列;②數(shù)列{bn}具有“P性質(zhì)”,則稱數(shù)列{an}具有“變換P性質(zhì)”,下面三個數(shù)列:①數(shù)列1,2,3,4,5;②數(shù)列1,2,3,…,11,12;③數(shù)列{an}的前n項和為Sn=
n
3
(n2-1).其中具有“P性質(zhì)”或“變換P性質(zhì)”的有( 。
A、③B、①③C、①②D、①②③

查看答案和解析>>

同步練習冊答案