若直線x+my+3m=0被圓x2+y2=r2(r>0)所截得的最短弦長為8,則r=
 
考點:直線與圓相交的性質(zhì)
專題:直線與圓
分析:利用弦心距與半徑以及半弦長的關(guān)系,求出半徑即可.
解答: 解:直線x+my+3m=0恒過(0,-3),
圓心到直線的距離為:d=
|3m|
1+m2
,弦長的最小值為8,
此時圓心與(0,-3)連線垂直,∴d=3,
∴r2-32=42,
r2=9+16=25.
∴r=5.
故答案為:5.
點評:本題考查直線與圓的位置關(guān)系,考查轉(zhuǎn)化思想以及計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=cos2x+
3
sinxcosx+1,x∈R.
(1)當函數(shù)y取得最大值時,求自變量x的集合;
(2)求該函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過兩圓x2+y2+6x-4=0和x2+y2+6y-28=0的交點,并且圓心在直線x-y-4=0上的圓的方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log 
1
3
(-x2+4x+5)的單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=i•(1+i)(i為虛數(shù)單位)在復(fù)平面上對應(yīng)的點位于第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=
1
2
,則cos2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊經(jīng)過點P(-3,4),則sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足
x-y+1≥0
x+y-1≥0
3x-y-3≤0
,則z=2x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,sin2A=sin2B+sin2C+sinBsinC,則A=( 。
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

同步練習冊答案