精英家教網(wǎng)如圖,圓O的直徑AB=8,C為圓周上一點,BC=4,過C作圓的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點E,則線段AE的長為
 
分析:連接OC,BE,由圓角定定理,我們可得BE⊥AE,直線l是過C的切線,故OC⊥直線l,△OBC為等邊三角形,結合等邊三角形的性質及30°所對的直角邊等于斜邊的一半,我們易求出線段AE的長.
解答:解:連接OC,BE,如下圖所示:
精英家教網(wǎng)
則∵圓O的直徑AB=8,BC=4,
∴△OBC為等邊三角形,∠COB=60°
又∵直線l是過C的切線,故OC⊥直線l
又∵AD⊥直線l
∴AD∥OC
故在Rt△ABE中∠A=∠COB=60°
∴AE=
1
2
AB=4
故答案為:4
點評:本題考查的知識點是切線的性質,圓周角定理,其中根據(jù)切線的性質,圓周角定理,判斷出△ABE是一個∠B=30°的直角三角形是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線AD,垂足為D,則線段CD的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•天門模擬)(1)如圖,圓O的直徑AB=8,C為圓周上一點,BC=4,過點C作圓的切線l,過點A作直線l的垂線AD,D為垂足,AD與圓O交于點E,則線段AE的長為
4
4

(2)在平面直角坐標系下,曲線C1
x=2t+2a
y=-t
(t為參數(shù)),曲線C2
x=2sinθ
y=1+2cosθ
(θ為參數(shù)),若曲線C1、C2有公共點,則實數(shù)a的取值范圍為
[1-
5
,1+
5
]
[1-
5
,1+
5
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鹽城一模)[A.(選修4-1:幾何證明選講)
如圖,圓O的直徑AB=8,C為圓周上一點,BC=4,過C作圓的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點E,求線段AE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.(幾何證明選做題) 如圖,圓O的直徑AB=10,弦DE⊥AB于點H,HB=2.則DE=
8
8

B.(坐標系與參數(shù)方程選做題)已知直線C1
x=1+tcosα
y=tsinα
(t為參數(shù)),C2
x=cosθ
y=sinθ
(θ為參數(shù)),當α=
π
3
時,C1與C2的交點坐標為
(1,0);(
1
2
,-
3
2
)
(1,0);(
1
2
,-
3
2
)

C.(不等式選做題)若不等式|2a-1|≤|x+
1
x
|
對一切非零實數(shù)a恒成立,則實數(shù)a的取值范圍
[-
1
2
,
3
2
]
[-
1
2
,
3
2
]

查看答案和解析>>

同步練習冊答案