19、已知數(shù)列{an},其前n項和Sn滿足Sn+1=2λSn+1(λ是大于0的常數(shù)),且a1=1,a3=4.
(1)求λ的值;
(2)求數(shù)列{an}的通項公式an
(3)設(shè)數(shù)列{nan}的前n項和為Tn,求Tn
分析:(1)由Sn+1=2λSn+1知S2=2λS1+1=2λa1+1=2λ+1,S3=2λS2+1=4λ2+2λ+1,由此可求出λ=1.
(2)由題意可知Sn+1=2•2n-1,∴Sn=2n-1,由此可知an=2n-1
(3)由題意知Tn=1•20+2•21+3•22++(n-1)•2n-2+n•2n-1,2Tn=1•2+2•22++(n-2)•2n-2+(n-1)•2n-1+n•2n,由此可知Tn的值.
解答:解:(1)由Sn+1=2λSn+1得S2=2λS1+1=2λa1+1=2λ+1,S3=2λS2+1=4λ2+2λ+1,∴a3=S3-S2=4λ2,∵a3=4,λ>0,∴λ=1.(5分)
(2)由Sn+1=2Sn+1整理得Sn+1+1=2(Sn+1),
∴數(shù)列{Sn+1}是以S1+1=2為首項,以2為公比的等比數(shù)列,
∴Sn+1=2•2n-1,∴Sn=2n-1,
∴an=Sn-Sn-1=2n-1(n≥2),
∵當(dāng)n=1時a1=1滿足an=2n-1,∴an=2n-1.(10分)
(3)Tn=1•20+2•21+3•22++(n-1)•2n-2+n•2n-1,①2Tn=1•2+2•22++(n-2)•2n-2+(n-1)•2n-1+n•2n,②
①-②得-Tn=1+2+22++2n-2+2n-1-n•2n
則Tn=n•2n-2n+1.(14分)
點評:本題考查數(shù)列性質(zhì)和應(yīng)用,解題時要注意計算能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

15、已知數(shù)列{an},其前n項和Sn=n2+n+1,則a8+a9+a10+a11+a12=
100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},其前n項和為Sn=
3
2
n2+
7
2
n? (n∈N*)

(Ⅰ)求a1,a2
(Ⅱ)求數(shù)列{an}的通項公式,并證明數(shù)列{an}是等差數(shù)列;
(Ⅲ)如果數(shù)列{bn}滿足an=log2bn,請證明數(shù)列{bn}是等比數(shù)列,并求其前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},其前n項和為Sn=
3
2
n2+
7
2
n (n∈N*)

(Ⅰ)求數(shù)列{an}的通項公式,并證明數(shù)列{an}是等差數(shù)列;
(Ⅱ)如果數(shù)列{bn}滿足an=log2bn,請證明數(shù)列{bn}是等比數(shù)列,并求其前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},其前n項和為Sn,點(n,Sn)在以F(0,
14
)為焦點,以坐標(biāo)原點為頂點的拋物線上,數(shù)列{bn}滿足bn=2 an
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=an×bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案