A. | 0 | B. | $\frac{1}{4}$ | C. | $-\frac{1}{2}$ | D. | 1 |
分析 設(shè)f(u)=u3+sinu.根據(jù)題設(shè)等式可知f(x)=2a,f(2y)=-2a,進(jìn)而根據(jù)函數(shù)的奇偶性,求得f(x)=-f(2y)=f(-2y).進(jìn)而推斷出x+2y=0.進(jìn)而求得cos(x+2y)=1.
解答 解:設(shè)f(u)=u3+sinu,可得f(x)=2a,由式得f(2y)=-2a.
因?yàn)閒(u)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上是單調(diào)奇函數(shù),
∴f(x)=-f(2y)=f(-2y),
∴x=-2y,即x+2y=0,
∴cos(x+2y)=1,
故選:D.
點(diǎn)評(píng) 本題主要考查了利用函數(shù)思想解決實(shí)際問題.考查了學(xué)生運(yùn)用函數(shù)的思想,轉(zhuǎn)化和化歸的思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{-\frac{1}{2},+∞})$ | B. | $[{-\frac{3}{2},+∞})$ | C. | [-1,+∞) | D. | [-2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 6 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3x-y-5=0 | B. | x+3y-1=0 | C. | 2x-y-3=0 | D. | x+3y-5=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若p∧q為假命題,則p、q均為假命題 | |
B. | 命題“若x2=1,則x=1”為真命題 | |
C. | 命題“若x=y,則sinx=siny”的逆否命題為真命題 | |
D. | 命題“存在一個(gè)實(shí)數(shù)x,使不等式x2-3x+6<0成立”為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 0 | C. | 3 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com