函數(shù)f(x)的定義域?yàn)椋?∞,0)∪(0,+∞),且滿足對任意非零實(shí)數(shù)x1,x2都有f(x1x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判斷f(x)的奇偶性并證明;
(3)若f(4)=1,且f(x)在(0,+∞)為增函數(shù),求滿足f(2x-6)≤2成立的x的取值范圍.
解:(1)在f(x1x2)=f(x1)+f(x2)中,令x1=x2=1,可得f(1)=f(1)+f(1),即f(1)=0,
(2)在f(x1x2)=f(x1)+f(x2)中,令x1=x2=-1,可得f(1)=f(-1)+f(-1),
又由f(1)=0,可得f(-1)=0,
在f(x1x2)=f(x1)+f(x2)中,令x1=-1,x2=x,可得f(-x)=f(-1)+f(x),即f(-x)=f(x),
則f(x)為偶函數(shù);
(3)根據(jù)題意,對于f(2x-6),有2x-6≠0,則x≠3,
在f(x1x2)=f(x1)+f(x2)中,令x1=x2=4,可得f(16)=f(4)+f(4)=2,
f(2x-6)≤2?f(2x-6)≤f(16),
又由f(x)在(0,+∞)為增函數(shù),則有|2x-6|≤16,
解可得,-5≤x≤11,又由x≠3,
則x的取值范圍是[-5,3)∪(3,11].
分析:(1)用特殊值法,在f(x1x2)=f(x1)+f(x2)中,令x1=x2=1,可得f(1)=f(1)+f(1),即可得答案;
(2)在f(x1x2)=f(x1)+f(x2)中,令x1=x2=-1,可得f(1)=f(-1)+f(-1),有(1)可得f(-1)=0,進(jìn)而在f(x1x2)=f(x1)+f(x2)中,令x1=-1,x2=x,可得f(-x)=f(-1)+f(x),即可得答案;
(3)根據(jù)題意,由函數(shù)的定義域可得2x-6≠0,解可得x≠3,在f(x1x2)=f(x1)+f(x2)中,令x1=x2=4,可得f(16)=2,則f(2x-6)≤2可以變形為f(2x-6)≤f(16),結(jié)合函數(shù)的單調(diào)性可得|2x-6|≤16,解可得x的范圍,結(jié)合x≠3,可得答案.
點(diǎn)評:本題考查抽象函數(shù)的應(yīng)用,解(3)注意函數(shù)的定義域?yàn)椋?∞,0)∪(0,+∞),必有2x-6≠0,這是易錯點(diǎn).