求和:Sn=1+(1+
1
2
)+(1+
1
2
+
1
4
)+[1+
1
2
+
1
4
+…+(
1
2
n-1].
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:先求出1+
1
2
+
1
4
+…+(
1
2
n-1=2-
1
2n-1
,再利用分組求和法求Sn的值.
解答: 解:∵1+
1
2
+
1
4
+…+(
1
2
n-1=
1-(
1
2
)n
1-
1
2
=2-
1
2n-1

Sn=2n-(1+
1
2
+
1
22
+…+
1
2n-1
)
=2n-
1-
1
2n
1-
1
2
=2n-2+
1
2n-1
點評:本題考查數(shù)列的前n項和的求法,是中檔題,解題時要認(rèn)真審題,注意分組求和法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1與A1C相交于點D.
(1)求證:BD⊥平面AA1C1
(2)(文)設(shè)點E是直線B1C1上一點,且DE∥平面AA1B1B,求四棱錐E-AA1C1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1AC=
2
BC
,點D是AB的中點.
(1)證明:AC1∥平面B1CD;
(2)證明:B1C⊥平面ABC1
(3)證明:平面ABC1⊥平面B1CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)在其一個周期內(nèi)的圖象上有一個最高點(
π
12
,3)和一個最低點(
12
,-3).
(Ⅰ)求A,ω,φ;
(Ⅱ)求y=f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和{bn}是公比不相等的兩個等比數(shù)列,cn=an+bn.求證:數(shù)列{cn}不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點A(2,1)和點B(1,3)分別位于直線x-y+m=0的兩側(cè),則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式|x-4|-|x+1|≤a的解集為R,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

汽車以每小時50km的速度向東行駛,在A處看到一個燈塔M在北偏東60°方向,行駛1.2小時后,看到這個燈塔在北偏東15°方向,這時汽車與燈塔的距離為
 
km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列式子:1+
1
22
3
2
,1+
1
22
+
1
32
5
3
,1+
1
22
+
1
32
+
1
42
7
4
,則可歸納出下一個不等式為
 

查看答案和解析>>

同步練習(xí)冊答案