分析 (1)先求在x=1處的導數(shù)得到切線的斜率,然后求出切點坐標,根據(jù)點斜式方程可求出切線方程;
(2)求導,令f′(x)=0,得x=k-1,對k-1是否在區(qū)間[0,1]內(nèi)進行討論,從而求得f(x)在區(qū)間[0,1]上的最小值.
解答 解:(1)f(1)=(1-k)e=0,∴k=1,
∴∵f'(x)=xex,
∴f'(1)=e,而f(1)=0,
∴f(x)在x=1處的切線方程為:y-0=e(x-1)即y=ex-e;
(2)f′(x)=(x-k+1)ex,
令f′(x)=0,得x=k-1,
當k-1≤0,即k≤1時,函數(shù)f(x)在區(qū)間[0,1]上單調(diào)遞增,
∴f(x)在區(qū)間[0,1]上的最小值為f(0)=-k;
當0<k-1<1,即1<k<2時,由(I)知,f(x)在區(qū)間[0,k-1]上單調(diào)遞減,f(x)在區(qū)間(k-1,1]上單調(diào)遞增,
∴f(x)在區(qū)間[0,1]上的最小值為f(k-1)=-ek-1;
當k-1≥1,即k≥2時,函數(shù)f(x)在區(qū)間[0,1]上單調(diào)遞減,
∴f(x)在區(qū)間[0,1]上的最小值為f(1)=(1-k)e;
綜上所述f(x)min=$\left\{\begin{array}{l}{-k,k≤1}\\{-{e}^{k-1},1<k<2}\\{(1-k)e,k≥2}\end{array}\right.$.
點評 本題主要考查利用導數(shù)研究函數(shù)的單調(diào)性和在閉區(qū)間上的最值問題,對方程f'(x)=0根是否在區(qū)間[0,1]內(nèi)進行討論,體現(xiàn)了分類討論的思想方法,增加了題目的難度.屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | k>32 | B. | k≥16 | C. | k≥32 | D. | k<16 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {-1,1} | B. | {1,2} | C. | {-1,1,3,5} | D. | {-1,0,1,2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{1}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|1<x<2} | B. | {x|1≤x≤2} | C. | {x|1<x≤2} | D. | {x|1≤x<2} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com