已知函數(shù)f(x)=x2,定義域為[-2,1],值域為
 
考點:函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先根據(jù)二次的對稱軸及開口方向及對稱軸,觀察函數(shù)在給定區(qū)間上的單調(diào)性及最值點即可求得原函數(shù)的值域.
解答: 解:∵函數(shù)f(x)=x2-x+1的對稱軸是:x=0,且開口向上,
∴函數(shù)f(x)=x2在定義域[-2,1]上的最大值為:yx=-2=4,
最小值為:yx=0=0,
故答案為:[0,4].
點評:本題考查二次函數(shù)的值域,屬于求二次函數(shù)的最值問題,考查運算求解能力,考查數(shù)形結(jié)合思想,屬于基本題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某班一共有52名同學(xué),現(xiàn)將該班學(xué)生隨機編號,用系統(tǒng)抽樣的方法抽取一個容量為4的樣本,已知7號、33號、46號同學(xué)在樣本中,那么樣本中還有一位同學(xué)的編號應(yīng)是(  )
A、13B、19C、20D、51

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖給出了一個“直角三角形數(shù)陣”:滿足每一列成等差數(shù)列,從第三行起,每一行的數(shù)成等比數(shù)列,且每一行的公比相等,記第i行第j列的數(shù)為aij(i≥j,i,j∈N*),則a88=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別是a,b,c,若A,B,C成等差數(shù)列,且a,c是方程x2-10x+12=0的兩根,則邊長b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:集合A={x|2x≤256},集合B={x|log2x≥
1
2
}.
(1)求A∩B;
(2)若函數(shù)f(x)=log2
x
2
)•log 
2
x
2
)-m(x∈A∩B)的圖象與x軸有交點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別為△ABC角A、B、C所對的邊,若滿足a=
2
,b=
3
,A=45°,則角B的大小為( 。
A、90°B、60°
C、60°或120°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+alnx在x=1處的切線與直線x+2y=0垂直,函數(shù)g(x)=f(x)+
1
2
x2-bx.
(1)求實數(shù)a的值;
(2)若函數(shù)g(x)存在單調(diào)遞減區(qū)間,求實數(shù)b的取值范圍;
(3)設(shè)x1,x2(x1<x2)是函數(shù)g(x)的兩個極值點,若b≥
7
2
,求g(x1)-g(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,2a+8b-ab=0,則a+b的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a=
65
,b=3-
1
2
,c=log2
0.8,則( 。
A、a>b>c
B、b>a>c
C、c>a>b
D、b>c>a

查看答案和解析>>

同步練習(xí)冊答案