【題目】某批發(fā)市場一服裝店試銷一種成本為每件元的服裝規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于成本的,經(jīng)試銷發(fā)現(xiàn)銷售量(件)與銷售單價(jià)(元)符合一次函數(shù),且時(shí),;時(shí),.
(1)求一次函數(shù)的解析式,并指出的取值范圍;
(2)若該服裝店獲得利潤為元,試寫出利潤與銷售單價(jià)之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),可獲得最大利潤最大利潤是多少元?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】信息科技的進(jìn)步和互聯(lián)網(wǎng)商業(yè)模式的興起,全方位地改變了大家金融消費(fèi)的習(xí)慣和金融交易模式,現(xiàn)在銀行的大部分業(yè)務(wù)都可以通過智能終端設(shè)備完成,多家銀行職員人數(shù)在悄然減少.某銀行現(xiàn)有職員320人,平均每人每年可創(chuàng)利20萬元.據(jù)評估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.2萬元,但銀行需付下崗職員每人每年6萬元的生活費(fèi),并且該銀行正常運(yùn)轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為使裁員后獲得的經(jīng)濟(jì)效益最大,該銀行應(yīng)裁員多少人?此時(shí)銀行所獲得的最大經(jīng)濟(jì)效益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AOB是一塊半徑為r的扇形空地,.某單位計(jì)劃在空地上修建一個(gè)矩形的活動(dòng)場地OCDE及一矩形停車場EFGH,剩余的地方進(jìn)行綠化.若,設(shè)
(Ⅰ)記活動(dòng)場地與停車場占地總面積為,求的表達(dá)式;
(Ⅱ)當(dāng)為何值時(shí),可使活動(dòng)場地與停車場占地總面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左、右焦點(diǎn)分別為和,離心率是,直線過點(diǎn)交橢圓于, 兩點(diǎn),當(dāng)直線過點(diǎn)時(shí), 的周長為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)直線繞點(diǎn)運(yùn)動(dòng)時(shí),試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)若函數(shù)存在5個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一元線性同余方程組問題最早可見于中國南北朝時(shí)期(公元世紀(jì))的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”問題,原文如下:有物不知數(shù),三三數(shù)之剩二,五五數(shù)之剩三,問物幾何?即,一個(gè)整數(shù)除以三余二,除以五余三,求這個(gè)整數(shù).設(shè)這個(gè)整數(shù)為,當(dāng)時(shí), 符合條件的共有_____個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,設(shè)點(diǎn),直線:,點(diǎn)在直線上移動(dòng),是線段與軸的交點(diǎn),過、分別作直線、,使,,.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)已知⊙:,過拋物線上一點(diǎn)作兩條直線與⊙相切于、兩點(diǎn),若直線在軸上的截距為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最小值;
(Ⅲ)若, 求使方程有唯一解的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)如圖所示,在長方體中,,(),、分別是和的中點(diǎn),且平面.
(1)求的值;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com