【題目】已知函數(shù).
(1)若函數(shù)的定義域為,求實數(shù)的取值范圍;
(2)若函數(shù)的定義域為,且滿足如下兩個條件:①在內(nèi)是單調(diào)遞增函數(shù);②存在,使得在上的值域為,那么就稱函數(shù)為“希望函數(shù)”,若函數(shù)是“希望函數(shù)”,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)由函數(shù)的定義域為,即恒成立,結(jié)合指數(shù)函數(shù)的性質(zhì),即可求解;
(2)根據(jù)題設(shè)得到函數(shù)在上的值域為,且函數(shù)是單調(diào)遞增函數(shù),由對數(shù)函數(shù)的性質(zhì),得到,轉(zhuǎn)化為是的兩個根,結(jié)合二次函數(shù)的性質(zhì),即可求解.
(1)由題意,函數(shù)的定義域為,即恒成立,
所以恒成立,因為,所以,所以的取值范圍.
(2)因為函數(shù)是“希望函數(shù)”,
所以在上的值域為,且函數(shù)是單調(diào)遞增函數(shù),
所以,即,所以是的兩個根,
設(shè),
因為,所以有2個不等的正實數(shù)根,
所以且兩根之積等于,解得
所以實數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是拋物線:的焦點,點為拋物線的對稱軸與其準(zhǔn)線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過坐標(biāo)原點,圓的方程為.
(1)當(dāng)直線的斜率為時,求與圓相交所得的弦長;
(2)設(shè)直線與圓交于兩點,且為的中點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右有頂點分別是、,上頂點是,圓:的圓心到直線的距離是,且橢圓的右焦點與拋物線的焦點重合.
(Ⅰ)求橢圓的方程;
(Ⅱ)平行于軸的動直線與橢圓和圓在第一象限內(nèi)的交點分別為、,直線、與軸的交點記為,.試判斷是否為定值,若是,證明你的結(jié)論.若不是,舉反例說明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓:的離心率為,過左焦點且斜率為的直線交橢圓于兩點,線段的中點為,直線:交橢圓于兩點.
(1)求橢圓的方程;
(2)求證:點在直線上;
(3)是否存在實數(shù),使得?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國個人所得稅法》第十四條中有下表(部分):
個人所得稅稅率(工資、薪金所得適用)
級數(shù) | 全月應(yīng)納所得額 | 稅率(%) |
1 | 不超過元的部分 | |
2 | 超過元至元的部分 | |
3 | 超過元至元的部分 | |
4 | 超過元至元的部分 | |
5 | 超過元至元的部分 |
上表中“全月應(yīng)納稅所得額”是從月工資、薪金收入中減去元后的余額.如果某人月工資、薪金收入為元,那么他應(yīng)納的個人所得稅為________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項等比數(shù)列滿足,,數(shù)列滿足.
(1)求數(shù)列,的通項公式;
(2)令,求數(shù)列的前項和;
(3)若,且對所有的正整數(shù)都有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題在區(qū)間上是減函數(shù);
命題q:不等式無解。
若命題“”為真,命題“”為假,求實數(shù)m 的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com