【題目】如圖,已知四邊形ABCD為梯形,ABCD,∠DAB=90°,BDD1B1為矩形,平面BDD1B1⊥平面ABCD,又AB=AD=BB1=1,CD=2.

(1)證明:CB1AD1

(2)求B1到平面ACD1的距離.

【答案】(1)見證明;(2)1

【解析】

(1)推導出BB1⊥平面ABCD,DD1⊥平面ABCD,連結AC,推導出B1C⊥B1D1,B1C⊥AB1,從而B1C⊥面B1D1A,由此能證明CB1⊥AD1

(2)求出四面體B1-AD1C的體積V=,,設B1到平面ACD1的距離為h,由等體積法得h=,,由此能求出B1到平面ACD1的距離.

證明:(1)∵BDD1B1是矩形,且平面BDD1B1⊥平面ABCD,

BB1⊥平面ABCD,DD1⊥平面ABCD

RtD1DC中,D1C=,AD1=AB1=,

連結AC,在梯形ABCD中,∠DAB=90°,AD=AB=1,DC=2,

AC=,BC=,∴B1C=

在△B1D1C中,D1C=,

B1C=,∴B1CB1D1

在△B1CA中,B1C=,AB1=,AC=

B1CAB1,

B1D1AB1=B1,∴B1C⊥面B1D1A,

AD1平面B1D1A,∴CB1AD1

解:(2)在△B1D1A中,AB1=B1D1=AD1=,

則△BD1A的面積S==,

∴四面體B1-AD1C的體積V=,

在△ACD1中,AC=CD1=,而AD1=

∴等腰△ACD1的邊AD1上的高d==,

∴△ACD1的面積S==,

B1到平面ACD1的距離為h,由等體積法得h=

,解得h=1,

B1到平面ACD1的距離為1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,,且,.

1)證明:平面平面;

2)若點的中點,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經過點,離心率為.過原點的直線與橢圓有兩個不同的交點.

1)求橢圓長半軸長;

2)求最大值;

3)若直線分別與軸交于點,求證:的面積與的面積的乘積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某共享單車經營企業(yè)欲向甲市投放單車,為制定適宜的經營策略,該企業(yè)首先在已投放單車的乙市進行單車使用情況調查.調查過程分隨機問卷、整理分析及開座談會三個階段.在隨機問卷階段,A,B兩個調查小組分赴全市不同區(qū)域發(fā)放問卷并及時收回;在整理分析階段,兩個調查小組從所獲取的有效問卷中,針對15至45歲的人群,按比例隨機抽取了300份,進行了數(shù)據(jù)統(tǒng)計,具體情況如下表:

組別

年齡

A組統(tǒng)計結果

B組統(tǒng)計結果

經常使用單車

偶爾使用單車

經常使用單車

偶爾使用單車

27人

13人

40人

20人

23人

17人

35人

25人

20人

20人

35人

25人

(1)先用分層抽樣的方法從上述300人中按“年齡是否達到35歲”抽出一個容量為60人的樣本,再用分層抽樣的方法將“年齡達到35歲”的被抽個體數(shù)分配到“經常使用單車”和“偶爾使用單車”中去.求這60人中“年齡達到35歲且偶爾使用單車”的人數(shù);

(2)從統(tǒng)計數(shù)據(jù)可直觀得出“是否經常使用共享單車與年齡(記作歲)有關”的結論.在用獨立性檢驗的方法說明該結論成立時,為使犯錯誤的概率盡可能小,年齡應取25還是35?請通過比較的觀測值的大小加以說明.

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱中,,,D為線段AC的中點.

1)求證:

2)求直線與平面所成角的余弦值;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我邊防局接到情報,在海礁所在直線的一側點處有走私團伙在進行交易活動,邊防局迅速派出快艇前去搜捕:如圖,已知快艇出發(fā)位置在的另一側碼頭處,公里,公里,;

1)是否存在點,使快艇沿航線的路程相等;如存在,則建立適當?shù)闹苯亲鴺讼,求出點的軌跡方程,且畫出軌跡的大致圖形;如不存在,請說明理由;

2)問走私船在怎樣的區(qū)域上時,路線比路線的路程短,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的準線l經過橢圓的左焦點,且l與橢圓交于A,B兩點,過橢圓N右焦點的直線交拋物線MC,D兩點,交橢圓于G,H兩點,且面積為3.

1)求橢圓N的方程;

2)當時,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“斗拱”是中國古代建筑中特有的構件,從最初的承重作用,到明清時期集承重與裝飾作用于一體。在立柱頂、額枋和檐檁間或構架間,從枋上加的一層層探出成弓形的承重結構叫拱,拱與拱之間墊的方形木塊叫斗。如圖所示,是“散斗”(又名“三才升”)的三視圖,則它的體積為( )

A. B. C. 53 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

(1)討論函數(shù)的單調性;

(2)若對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案