若直線y=x+b與曲線y=-
4x-x2
有公共點(diǎn),則b的取值范圍是(  )
分析:分別畫出直線y=x+b與曲線y=-
4x-x2
,當(dāng)直線經(jīng)過點(diǎn)原點(diǎn)時(shí),直線與曲線有公共點(diǎn),.當(dāng)直線與曲線相切時(shí),直線與曲線有公共點(diǎn),利用點(diǎn)的直線距離公式和切線的性質(zhì)即可得出.
解答:精英家教網(wǎng)解:∵方程y=-
4x-x2
可化為:
當(dāng)直線經(jīng)過點(diǎn)A(0,0)時(shí),此時(shí)直線與曲線有公共點(diǎn),代入直線方程可得0=0+b,解得b=0.
當(dāng)直線與曲線相切時(shí),直線與曲線有公共點(diǎn),由點(diǎn)的直線距離公式可得
|2+b|
2
=2,解得b=±
2
-2

由圖可知,應(yīng)取b=-2-
2

因此當(dāng)-2-
2
≤b≤0
時(shí),直線y=x+b與曲線y=-
4x-x2
有公共點(diǎn).
故選B.
點(diǎn)評(píng):本題考查了直線與圓的位置關(guān)系、相切的性質(zhì)、數(shù)形結(jié)合等基礎(chǔ)知識(shí)與基本技能.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a為常數(shù),若曲線段y=ax2+3x(x∈(0,4))存在與直線x+y-1=0垂直的切線,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:天驕之路中學(xué)系列 讀想用 高二數(shù)學(xué)(上) 題型:044

如圖所示,直線l1l2相交于點(diǎn)M,且l1l2,點(diǎn)Nl1.以A、B為端點(diǎn)的曲線段C上的任意一點(diǎn)到l2的距離與到點(diǎn)N的距離相等.若△AMN為銳角三角形,|AM|=,|AN|=3,且|BN|=6,分別以l1l2為x軸和y軸,建立如圖坐標(biāo)系,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)A (0,)為圓心,1為半徑的圓相切,又知C的一個(gè)焦點(diǎn)與A關(guān)于y = x對(duì)稱.

    (1)求雙曲線C的方程;

    (2)若Q是雙曲線線C上的任一點(diǎn),F1,F2為雙曲線C的左、右兩個(gè)焦點(diǎn),從F1引∠F1QF2的平分線的垂線,垂足為N,試求點(diǎn)N的軌跡方程;

    (3)設(shè)直線y = mx + 1與雙曲線C的左支交于AB兩點(diǎn),另一直線l經(jīng)過M (–2,0)及AB的中點(diǎn),求直線ly軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a為常數(shù),若曲線段y=ax2+3x(x∈(0,4))存在與直線x+y-1=0垂直的切線,則實(shí)數(shù)a的取值范圍是(  )
A.[-
1
2
,+∞]
B.(-∞,-
1
2
C.[-
1
4
,+∞]
D.(-∞,-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省莆田二中高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知a為常數(shù),若曲線段y=ax2+3x(x∈(0,4))存在與直線x+y-1=0垂直的切線,則實(shí)數(shù)a的取值范圍是( )
A.[-,+∞]
B.(-∞,-
C.[-,+∞]
D.(-∞,-

查看答案和解析>>

同步練習(xí)冊(cè)答案