四棱錐O-ABCD中,OB⊥底面ABCD,且,底面ABCD是菱形;點B在平面OAD 內(nèi)的射影G恰為△OAD的重心,
(1)求OA的長;
(2)求二面角B-OC-D的平面角的余弦值。
解:(1);
(2)。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐O-ABCD中,底面ABCD是邊長為1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M為OA的中點.
(Ⅰ)求異面直線AB與MD所成角的大;
(Ⅱ)求點B到平面OCD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在四棱錐O-ABCD中,OA⊥平面ABCD,底面ABCD為矩形,AB=OA=tBC(t>0).
(I)當t=1時,求證:BD⊥DC;
(II)若BC邊有且僅有一個點E,使得OE⊥ED,求此時二面角A-CD-E的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐O-ABCD中,底面ABCD是邊長為1的正方形,OA⊥底面ABCD,OA=2,M為OA的中點,N為BC中點,以A為原點,建立適當?shù)目臻g直角坐標系,利用空間向量解答以下問題
(1)證明:直線BD⊥OC
(2)證明:直線MN∥平面OCD
(3)求異面直線AB與OC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐O-ABCD中,底面ABCD是邊長為1的菱形,∠ABC=
π4
,OA⊥底面ABCD,且OA=2,M為OA的中點,N為BC的中點.
(1)證明:直線MN∥平面OCD;
(2)求點N到平面OCD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•閘北區(qū)二模)如圖,在四棱錐O-ABCD中,底面ABCD是邊長為2的正方形,OA⊥底面ABCD,OA=2,M為OA的中點.
(Ⅰ)求異面直線OC與MD所成角的大;
(Ⅱ)求點M到平面OCD的距離.

查看答案和解析>>

同步練習冊答案