已知函數(shù)f(x)=sin(2x+
π
6
)要得到g(x)=sin2x的圖象,只需將f(x)圖象( 。
A、向左平移
π
6
個(gè)單位
B、向右平移
π
6
個(gè)單位
C、向左平移
π
12
個(gè)單位
D、向右平移
π
12
個(gè)單位
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答: 解:∵函數(shù)f(x)=sin(2x+
π
6
)=sin2(x+
π
12
),
要得到g(x)=sin2x的圖象,只需將f(x)圖象向右平移
π
12
個(gè)單位即可,
故選:D.
點(diǎn)評:本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時(shí)滿足:
①不等式f(x)≤0的解集有且只有一個(gè)元素;
②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=f(n).規(guī)定:在各項(xiàng)均不為零的數(shù)列{bn}中,所有滿足k•bk+1<0的正整數(shù)k的個(gè)數(shù)稱為這個(gè)數(shù)列{bn}的變號數(shù).若令bn=1-
a
an
(n∈N*)則:(。゜2=
 
;(ⅱ)數(shù)列{bn}的變號數(shù)為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正數(shù)x,y滿足x2+6xy-1=0,則x+2y的最小值是( 。
A、
2
2
3
B、
2
3
C、
3
3
D、
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了有效管理學(xué)生遲到問題,某校專對各班遲到現(xiàn)象制定了相應(yīng)的等級標(biāo)準(zhǔn),其中D級標(biāo)準(zhǔn)為“連續(xù)10天,每天遲到不超過7人”根據(jù)過去10天1、2、3、4班的遲到數(shù)據(jù),一定符合D級標(biāo)準(zhǔn)的是( 。
A、1班:總體平均值為3,中位數(shù)為4
B、2班:總體平均值為1,總體方差大于0
C、3班:中位數(shù)為2,眾數(shù)為3
D、4班:總體平均值為2,總體方差為3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的定義域?yàn)锳,若常數(shù)C滿足:對任意正實(shí)數(shù)?,總存在x∈A,使得0<|f(x)-C|<?成立,則稱C為函數(shù)y=f(x)的“漸近值”.現(xiàn)有下列三個(gè)函數(shù):①f(x)=
x
x-1
;②f(x)=
1,x為有理數(shù)
0,x為無理數(shù)
;③f(x)=
sinx
x
.其中以數(shù)“1”為漸近值的函數(shù)個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列5,4
2
7
,3
4
7
,…的前n項(xiàng)和為Sn,則使得Sn最大的序號n的值為( 。
A、7B、8C、7或8D、8或9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

斐波那契數(shù)列{Fn},1,1,2,3,5,8,13,21,34,55,89,144,283,…,現(xiàn)已知{Fn}的連續(xù)兩項(xiàng)平方和仍是數(shù)列{Fn}中的項(xiàng),則F39+F40=(  )
A、F39
B、F40
C、F41
D、F42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
33x-2
,g(x)=
1
2x-3
,則函數(shù)f(x)•g(x)的定義域是( 。
A、[
2
3
,
3
2
B、(
3
2
,+∞)
C、[
2
3
,+∞)
D、(
2
3
,
3
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

春節(jié)期間,某商場進(jìn)行促銷活動,方案是:顧客每買滿200元可按以下方式摸球兌獎:箱內(nèi)裝有標(biāo)著數(shù)字20,40,60,80,1 00的小球各兩個(gè),顧客從箱子里任取三個(gè)小球,按三個(gè)小球中最大數(shù)字等額返還現(xiàn)金(單位:元),每個(gè)小球被取到的可能性相等.
(Ⅰ)若有三位顧客各買了268元的商品,求至少有二個(gè)返獎不少于80元的概率;
(Ⅱ)在(Ⅰ)的條件下,設(shè)返獎不少于80元的人數(shù)為ξ,求ξ的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案